Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+

DOI: https://doi.org/10.9767/bcrec.13.1.993.36-46
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 08-03-2017
Published: 02-04-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

The purpose of this study was to synthesize polydimethylsiloxanes by heterogeneous catalysis, based on the polymerization of the hexadecamethylcyclooctasiloxane (D8) by an environment-friendly solid catalyst (Maghnite-H+). Maghnite-H+ is a natural Algerian clay of the montmorillonite type, prepared by activation with sulfuric acid, the impact of this activation was observable in the XRD spectrum, by the increase in the interlayer spacing (d001) resulting from the intercalation of hydronium ions between layers. The molecular structure of the obtained polymer was determined by different chemical methods of analysis such as IR, 1H NMR, and 13C NMR. The thermal behavior of the polysiloxane obtained was confirmed by DSC. In order to achieve the best possible yield and at the same time to get a polymer of high molecular mass, the operating conditions have been set at t = 8 h and T = 70 °C after the reaction was repeated several times. The average molecular mass and the polydispersity index were measured by GPC. A reaction mechanism has been suggested to show the action of the Maghnite-H+ during the reaction. Copyright © 2018 BCREC Group. All rights reserved

Received: 8th March 2017; Revised: 27th July 2017; Accepted: 1st August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Kherroub, D.E., Belbachir, M., Lamouri, S. (2018). Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 36-46 (doi:10.9767/bcrec.13.1.993.36-46)

 

Keywords

Clay; Green Catalyst; Maghnite-H+; Hexadecamethylcyclooctasiloxane; Polysiloxane

  1. Djamal Eddine Kherroub  Orcid
    1Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El’Menouer Oran 31000, Algeria 2University Centre of Relizane Ahmed Zabana, Institute of Sciences and Technology, BP 48000, Algeria
    Chemistry
  2. Mohammed Belbachir 
    Laboratory of Polymer Chemistry, Department of Chemistry, Faculty of Exact and Applied Sciences, University of Oran 1 Ahmed Ben Bella, BP 1524 El’Menouer Oran 31000, Algeria
  3. Saad Lamouri 
    3Laboratory of Macromolecular Chemistry, Polytechnic Military School (EMP), Bordj El Bahri, 16111 Algiers, Algeria
  1. Clark, J.H., Rhodes, C.N. eds. (2000). Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents. Cambridge: Royal Society of Chemistry.
  2. Anastas, P.T., Williamson, T.C. (2009). Green Chemistry and the Role of Analytical Methodology Development. Critical Reviews in Analytical Chemistry, 3: 167-175.
  3. Anastas, P.T., Warner, J. eds. (2009). Green Chemistry: Theory and Practice. Oxford: Oxford University Press.
  4. Kherroub, D.E., Belbachir, M., Lamouri, S. (2014). Preparation and Characterization of Organophilic Montmorillonite (12-maghnite) Using Algerian Clay. Oriental Journal of Chemistry, 30: 1647-1651.
  5. Belbachir, M., Bensaoula, A. (2001). US Patent. No 6, 274,527B1
  6. Meghabar, R., Megherbi, A., Belbachir, M. (2003). Maghnite-H+, An Ecocatalyst for Cationic Polymerization of N-vinyl-2-pyrrolidone. Polymer, 44: 4097-4100.
  7. Bouchama, A., Ferrahi, M.I., Belbachir, M. (2015). Copolymerization of ε-Caprolactone with Tetrahydrofuran by A Solid Acid, in the Presence of Acetic Anhydride. Journal of Materials and Environmental Science, 6: 977-982.
  8. Kherroub, D.E., Belbachir, M., Lamouri, S., Bouhadjar, L., Chikh, K. (2013). Synthesis of Polyamide-6/Montmorillonite Nanocomposites by Direct In-situ Polymerization Catalysed by Exchanged Clay. Oriental Journal of Chemistry, 29: 1429-1436.
  9. Kherroub, D.E., Belbachir, M., Lamouri, S. (2015). Nylon 6/clay Nanocomposites Prepared with Algerian Modified Clay (12-maghnite). Research on Chemical Intermediates, 41: 5217-5228.
  10. Kherroub, D.E., Belbachir, M., Lamouri, S. (2015). Synthesis of Poly(furfuryl alcohol)/montmorillonite Nanocomposites by Direct In-situ Polymerization. Bulletin of Materials Science, 38: 1-7.
  11. Molenberg, A., Möller, M. (1995). A Fast Catalyst System for the Ring-Opening Polymerization of Cyclosiloxanes. Macromolecular Rapid Communications, 16: 449-453.
  12. Pibre, G., Chaumont, P., Fleury, E., Cassagnau, P. (2008). Ring-opening Polymerization of Decamethylcyclopentasiloxane Initiated by A Superbase: Kinetics and Rheology. Polymer, 49: 234-240.
  13. Gee, R.P. (2015). Emulsion Polymerization of Dimethylcyclosiloxane in Cationic Emulsion: Mechanism Study Utilizing Two Phase Liquid–Liquid Reaction Kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 48: 297-306.
  14. Sun, C.N., Shen, M.M., Deng, L.L., Mo, J.Q., Zhou, B.W. (2014). Kinetics of Ring-opening Polymerization of Octamethylcyclotetrasiloxane in Microemulsion. Chinese Chemical Letters, 25: 621-626.
  15. Sijiu, J., Teng, Q., Xiaoyu, L. (2010). Kinetic Study on the Ring-Opening Polymerization of Octamethylcyclotetrasiloxane (D4) in Miniemulsion. Polymer, 51: 4087-4094.
  16. Conan, J.T., William, P.W., Guoping, C. (2003). Acid and Base Catalyzed Ring-opening Polymerization of 2,2,4,4,6,6-hexamethyl-8,8-diphenylcyclotetrasiloxane. Polymer, 44: 4149-4155.
  17. Chojnowski, J., Rubinsztajn, S., Fortuniak, W., Kurjata, J. (2007). Oligomer and Polymer Formation in Hexamethylcyclotrisiloxane (D3)–Hydrosilane Systems under Catalysis by Tris(pentafluorophenyl)borane. Journal of Inorganic and Organometallic Polymers and Materials, 17: 173-187.
  18. Wilczek, L., Rubinsztajn, S., Chojnowski, J. (1986). Comparison of the Cationic Polymerization of Octamethylcyclotetrasiloxane and Hexamethylcyclotrisiloxane. Macromolecular Chemistry and Physics, 187: 39-51.
  19. Friedel, C., Crafts, J.M. (1877). Comprehensive Organic Name Reactions and Reagents. Comptes Rendus Chimie, 84: 1392-1450.
  20. Crafts, J.M. (1900). Friedel Memorial Lecture. Journal of the Chemical Society, 77: 993-1000.
  21. Kendrick, T.C., Parbhoo, B., White, J.W. eds. (1991). The Silicon-Heteroatom Bond. Chichester: J. Wiley & Sons.
  22. Chojnowski, J., Cypryk, M. (2000). Silicon-Containing Polymers. Dordrecht: Kluwer.
  23. Chojnowski, J., Cypryk, M., Kazmierski, K. (2002). Cationic Polymerization of a Model Cyclotrisiloxane with Mixed Siloxane Units Initiated by a Protic Acid. Mechanism of Polymer Chain Formation. Macromolecules, 36: 9904-9911.
  24. Sigwalt, P. (1987). New Developments in Cationic Polymerization of Cyclosiloxanes. Polymer Journal, 19: 567-570.
  25. Rodriquez, F. (1989). eds. Principles of Polymer Systems. New York: Hemisphere Publishing Corp.
  26. DeGroot, J.V., Norris, A., Shedric, O.G., Clapp, T.V. (2004). eds. Highly Transparent Silicone Materials. Midland: Proc. SPIE.
  27. Narins, R.S., Beer, K. (2006). Liquid Injectable Silicone: A Review of Its History, Immunology, Technical Considerations, Complications, and Potential. Plastic & Reconstructive Surgery, 118: 77-84.
  28. Dumitriu, S. (2002). eds. Polymeric Biomaterials. New York: Marcel Dekker.
  29. Ya-Qing, Z., Xiang, K., Xiao-Li, Z., Zheng-Hong, L. (2010). Particle Kinetics and Physical Mechanism of Microemulsion Polymerization of Octamethylcyclotetrasiloxane. Powder Technology, 201: 146-152.
  30. Jian, W., Xueming, C., Panjin, J., Qing, H., Mingtao, R. (2015). Synthesis and Characterization of the Copolymers Containing Blocks of Polydimethylsiloxane in Low Boiling Point Mixtures. Materials Chemistry and Physics, 149: 216-223.
  31. Ramli, M.R., Othman, M.B.H., Arifi, A., Ahmad, Z. (2011). Cross-link Network of Polydimethylsiloxane via Addition and Condensation (RTV) Mechanisms. Part I: Synthesis and Thermal Properties. Polymer Degradation and Stability, 96: 2064-2070.
  32. Namrata, S.T., Florence, D.J., Lawrence, F., Jacques, L. (2012). Open Journal of Organic Polymer Materials, 2: 13-22.
  33. Dollase, T., Spiess, H.W., Gottlieb, M., Yerushalmi-Rozen, R. (2002). Crystallization of PDMS: The Effect of Physical and Chemical Crosslinks. Europhysics Letters, 60: 390-396.
  34. Kherroub, D.E., Belbachir, M., Lamouri, S. (2014). Cationic Ring Opening polymerization of ε-caprolactam by a Montmorillonite Clay Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 9: 74-80.
  35. Kherroub, D.E., Belbachir, M., Lamouri, S. (2015). Study and Optimization of the Polymerization Parameter of Furfuryl Alcohol by Algerian Modified Clay. Arabian Journal for Science and Engineering. 40: 143-150.