Hydro-treating and Hydro-isomerisation of Sunflower Oil using Pt/SAPO-11: Influence of Templates in Ultrasonic Assisted with Hydrothermal Synthesis

*Shanmugam Palanisamy orcid scopus  -  Department of Chemical Engineering, Kongu Engineering College, India
Durona Palanisamy  -  Department of Chemical Engineering, Kongu Engineering College, India
Mugaishudeen Gul  -  Department of Chemical Engineering, Kongu Engineering College, India
Kannan Kandasamy  -  Department of Chemical Engineering, Kongu Engineering College, India
Borje Sten Gevert  -  Kempross AB, Sweden
Received: 27 Dec 2020; Revised: 15 Mar 2021; Accepted: 16 Mar 2021; Published: 31 Mar 2021; Available online: 16 Mar 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Pt/SAPO-11 mesopores type materials has successfully synthesized using different templates, such as: diethylamine (DEA), dimethylamine (DMA), and n-propylamine (n-PA), under ultrasonication coupled with hydrothermal treatment or independently with hydrothermal treatment. The influences of structure directing agent (SDA) and synthesis method are investigated by different characterization techniques and the role of the material as catalyst in hydrotreating of sunflower oil has examined. The synthesized materials have been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infra Red (FT-IR) techniques. It is found that SAPO-11 material which has synthesized with n-PA as a template has the characteristics of high silicon incorporation. Hydrotreating of sunflower oil is carried out in a fixed bed reactor with Pt impregnated SAPO-11 catalyst and a detailed study on the isomerization is performed by varying the operating parameters like temperature and space velocity. The high selectivity of Pt/SAPO-11 catalyst is achieved by uniform pore size and acidity. Also the pore opening of the catalyst has a major effect in the selectivity of the catalyst. Further, it represents a higher ratio of isomers compared to other synthesized catalysts on hydro-treating of sunflower oil.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: SAPO-11; Zeolite; Mesoporous; Hydrothermal; Ultrasonication; Hydrotreating; Hydroisomerisation; Hydrodeoxygenation
Funding: KVIT Trust SEED Grant Research Scheme under contract KEC/R&D/SGRS/05/2020

Article Metrics:

  1. Palanisamy, S. Gevert, B.S. (2014). Hydroprocessing of fatty acid methyl ester containing resin acids blended with gas oil. Fuel Processing Technology, 126, 435–440, doi: 10.1016/j.fuproc.2014.05.015
  2. Le Bihan, L., Yoshimura, Y. (2002). Control of hydrodesulfurization and hydrodearomatization properties over bimetallic Pd-Pt catalysts supported on Yb-modifed USY zeolite. Fuel, 81(4), 491–494, doi: 10.1016/S0016-2361(01)00069-2
  3. Rajesh, M., Sau, M., Malhotra, R.K., Sharma, D.K. (2015). Hydrotreating of Gas Oil, Jatropha Oil, and Their Blends Using a Carbon Supported Cobalt-Molybdenum Catalyst. Petroleum Science and Technology, 33(19), 1653–1659, doi: 10.1080/10916466.2015.1036291
  4. Vonortas, A., Kubička, D., Papayannakos, N. (2014). Catalytic co-hydroprocessing of gasoil-palm oil/AVO mixtures over a NiMo/γ-Al2O3 catalyst. Fuel, 116, 49–55, doi: 10.1016/j.fuel.2013.07.074
  5. Sankaranarayanan, T.M., Banu, M., Pandurangan, A., Sivasanker, S. (2011). Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites. Bioresource Technology, 102(22), 10717–10723, doi: 10.1016/j.biortech.2011.08.127
  6. Krár, M., Kasza, T., Kovács, S., Kalló, D., Hancsók, J. (2011). Bio gas oils with improved low temperature properties. Fuel Processing Technology, 92(5), 886–892, doi: 10.1016/j.fuproc.2010.12.007
  7. Scherzer, J., Gruia, A.J. (1996). Hydrocracking science and technology. New York: Crc Press, doi: 10.1201/9781482233889
  8. Veriansyah, B., Han, J.Y., Kim, S.K., Hong, S.A., Kim, Y.J., Lim, J.S., Shu, Y.W., Oh, S.G., Kim, J. (2011). Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel, 94, 578–585, doi: 10.1016/j.fuel.2011.10.057
  9. Liu, G., Tian, P., Li, J., Zhang, D., Zhou, F., Liu, Z. (2008). Synthesis, characterization and catalytic properties of SAPO-34 synthesized using diethylamine as a template. Microporous and Mesoporous Materials, 111(1–3), 143–149, doi: 10.1016/j.micromeso.2007.07.023
  10. Rahbari, Z.V., Khosravan, M., Kharat, A.N. (2017). Dealumination of mordenite zeolite and its catalytic performance evaluation in m-xylene isomerization reaction. Bulletin of the Chemical Society of Ethiopia, 31(2), 281–289, doi: 10.4314/bcse.v31i2.9
  11. Huang, W., Li, D., Kang, X., Shi, Y., Nie, H. (2004). Hydroisomerization of n-hexadecane on zeolite catalysts. Studies in Surface Science and Catalysis, 154C, 2353–2358, doi: 10.1016/s0167-2991(04)80497-x
  12. Taylor, R.J., Petty, R.H. (1994). Selective hydroisomerization of long chain normal paraffins. Applied Catalysis A, General, 119(1), 121–138, doi: 10.1016/0926-860X(94)85029-1
  13. Ono, Y. (2003). A survey of the mechanism in catalytic isomerization of alkanes. Catalysis Today, 81(1), 3–16, doi: 10.1016/S0920-5861(03)00097-X
  14. Maxwell, I.E., Stork, W.H.J. (1991). Hydrocarbon processing with zeolites. In: Studies in surface science and catalysis, Amsterdam, The Netherlands: Elsevier, pp. 571–630, doi: 10.1016/S0167-2991(08)63613-7
  15. Claude, M.C., Martens, J.A. (2000). Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst. Journal of Catalysis, 190(1), 39–48, doi: 10.1006/jcat.1999.2714
  16. Rabaev, M., Landau, M.V., Vidruk-Nehemya, R., Goldbourt, A., Herskowitz, M. (2015). Improvement of hydrothermal stability of Pt/SAPO-11 catalyst in hydrodeoxygenation–isomerization–aromatization of vegetable oil. Journal of Catalysis, 332, 164–176, doi: 10.1016/j.jcat.2015.10.005
  17. Campelo, J.M., Lafont, F., Marinas, J.M. (1998). Hydroconversion of n-dodecane over Pt/SAPO-11 catalyst. Applied Catalysis A: General, 170(1), 139–144, doi: 10.1016/S0926-860X(98)00036-2
  18. Palanisamy, S., Gevert, B.S. (2018). Hydrodeoxygenation of fatty acid methyl ester in gas oil blend-NiMoS/alumina catalyst. Green Processing and Synthesis, 7(3), 260–267, doi: 10.1515/gps-2016-0117
  19. Askari, S., Halladj, R. (2013). Effects of ultrasound-related variables on sonochemically synthesized SAPO-34 nanoparticles. Journal of Solid State Chemistry, 201, 85–92, doi: 10.1016/j.jssc.2013.02.026
  20. Palanisamy, S., Gevert, B.S. (2016). Study of non-catalytic thermal decomposition of triglyceride at hydroprocessing condition. Applied Thermal Engineering, 107, 301–310, doi: 10.1016/j.applthermaleng.2016.06.167
  21. Askari, S., Halladj, R., Nazari, M. (2013). Statistical analysis of sonochemical synthesis of SAPO-34 nanocrystals using Taguchi experimental design. Materials Research Bulletin, 48(5), 1851–1856, doi: 10.1016/j.materresbull.2013.01.021
  22. Blasco, T., Chica, A., Corma, A., Murphy, W.J., Agúndez-Rodríguez, J., Pérez-Pariente, J. (2006). Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties. Journal of Catalysis, 242(1), 153–161, doi: 10.1016/j.jcat.2006.05.027
  23. Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., Flanigen, E.M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092–6093, doi: 10.1021/ja00332a063
  24. Zhang, S., Chen, S.L., Dong, P., Yuan, G., Xu, K. (2007). Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media. Applied Catalysis A: General, 332(1), 46–55, doi: 10.1016/j.apcata.2007.07.047
  25. Liu, P., Ren, J., Sun, Y. (2008). Influence of template on Si distribution of SAPO-11 and their performance for n-paraffin isomerization. Microporous and Mesoporous Materials, 114(1–3), 365–372, doi: 10.1016/j.micromeso.2008.01.022
  26. Meriaudeau, P., Tuan, V.A., Lefebvre, F., Nghiem, V.T., Naccache, C. (1998). Isomorphous substitution of silicon in the AlPO4 framework with AEL structure: N-octane hydroconversion. Microporous and Mesoporous Materials, 22(1–3), 435–449, doi: 10.1016/S1387-1811(98)00095-X
  27. Yang, L., Aizhen, Y., Qinhua, X. (1990). Acidity, diffusion and catalytic properties of the silicoaluminophosphate SAPO-11. Applied Catalysis, 67(1), 169–177, doi: 10.1016/S0166-9834(00)84440-1
  28. Ping, L., Jie, R.E.N., Yuhan, S. (2008). Acidity and isomerization activity of SAPO-11 synthesized by an improved hydrothermal method. Chinese Journal of Catalysis, 29(4), 379–384, doi: 10.1016/S1872-2067(08)60034-0
  29. Doan, T., Nguyen, K., Dam, P., Vuong, T.H., Le, M.T., Thanh, H.P. (2019). Synthesis of SAPO-34 Using Different Combinations of Organic Structure-Directing Agents. Journal of Chemistry, 2019, 6197527, doi: 10.1155/2019/6197527
  30. Marchese, L., Frache, A., Gianotti, E., Martra, G., Causa, M., Coluccia, S. (1999). ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent. FTIR and FT-Raman studies of the host-guest and guest-guest interactions within the zeolitic framework. Microporous and Mesoporous Materials, 30(1), 145–153, doi: 10.1016/S1387-1811(99)00023-2
  31. Meriaudeau, P., Tuan, V.A., Nghiem, V.T., Lai, S.Y., Hung, L.N., Naccache, C. (1997). SAPO-11, SAPO-31, and SAPO-41 molecular sieves: Synthesis, characterization, and catalytic properties in n-octane hydroisomerization. Journal of Catalysis, 169(1), 55–66, doi: 10.1006/jcat.1997.1647
  32. Parlitz, B., Schreier, E., Zubowa, H.L., Eckelt, R., Lieske, E., Lischke, G., Fricke, R. (1995). Isomerization of n-heptane over Pd-loaded silico-alumino-phosphate molecular sieves. Journal of Catalysis, 155(1), 1–11, doi: 10.1006/jcat.1995.1182
  33. Verma, D., Rana, B.S., Kumar, R., Sibi, M.G., Sinha, A.K. (2015). Diesel and aviation kerosene with desired aromatics from hydroprocessing of jatropha oil over hydrogenation catalysts supported on hierarchical mesoporous SAPO-11. Applied Catalysis A: General, 490(1), 108–116, doi: 10.1016/j.apcata.2014.11.007
  34. Kumar, R., Rana, B.S., Tiwari, R., Verma, D., Kumar, R., Joshi, R.K., Garg, M.O., Sinha, A.K. (2010). Hydroprocessing of jatropha oil and its mixtures with gas oil. Green Chemistry, 12(12), 2232–2239, doi: 10.1039/c0gc00204f
  35. Rathore, V., Newalkar, B.L., Badoni, R.P. (2016). Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy for Sustainable Development, 31, 24–49, doi: 10.1016/j.esd.2015.11.003
  36. Filhoda Rocha, G.N., Brodzki, D., Djéga-Mariadassou, G. (1993). Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel, 72(4), 543–549, doi: 10.1016/0016-2361(93)90114-H
  37. Chen, N., Gong, S., Qian, E.W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Applied Catalysis B: Environmental, 174–175, 253–263, 10.1016/j.apcatb.2015.03.011
  38. Chen, N., Ren, Y., Qian, E.W. (2016). Elucidation of the active phase in PtSn/SAPO-11 for hydrodeoxygenation of methyl palmitate. Journal of Catalysis, 334, 79–88, doi: 10.1016/j.jcat.2015.11.001
  39. Pattanaik, B.P., Misra, R.D. (2017). Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review. Renewable and Sustainable Energy Reviews, 73, 545–557, doi: 10.1016/j.rser.2017.01.018
  40. Palanisamy, S., Kandasamy, K. (2020). Direct Hydrogenation and Hydrotreating of Neat Vegetal Oil into Renewable Diesel Using Alumina Binder with Zeolite. Rev. Chim., 71(9), 98–112, doi: 10.37358/RC.20.9.8321

Last update: 2021-04-21 20:55:56

No citation recorded.

Last update: 2021-04-21 20:55:58

No citation recorded.