skip to main content

Performance of Yeast Microbial Fuel Cell Integrated with Sugarcane Bagasse Fermentation for COD Reduction and Electricity Generation

Department of Chemical Engineering, Institut Teknologi Indonesia, jl. Raya Puspiptek Serpong, South Tangerang, 15320, Indonesia

Received: 12 Dec 2020; Revised: 12 Mar 2021; Accepted: 12 Mar 2021; Published: 30 Sep 2021; Available online: 16 Mar 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The purpose of this analysis is to evaluate the efficiency of the Microbial Fuel Cell (MFC) system incorporated with the fermentation process, with the aim of reducing COD and generating electricity, using sugarcane bagasse extract as a substrate, in the presence and absence of sugarcane fibers. There is a possibility of turning bagasse extract into renewable bioenergy to promote the sustainability of the environment and energy. As a result, the integration of liquid fermentation (LF) with MFC has improved efficiency compared to semi-solid state fermentation (S-SSF). The maximum power generated was 14.88 mW/m2, with an average COD removal of 39.68% per cycle. The variation margin of the liquid fermentation pH readings remained slightly decrease, with a slight deflection of +0.14 occurring from 4.33. With the absence of bagasse fibers, biofilm can grow freely on the anode surface so that the transfer of electrons is fast and produces a relatively high current. Experimental data showed a positive potential after an effective integration of the LF and MFC systems in the handling of waste. The product is then simultaneously converted into electrical energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: sugarcane utilization; semi-aerobic fermentation; microbial fuel cell system; Relative Decrease in Cell Potential; COD removal
Funding: Ministry of Research and Technology/National Research and Innovation Agency Republic of Indonesia

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
  1. Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N., Xing, D. (2013). Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technol., 144, 94–99, doi: 10.1016/j.biortech.2013.06.072
  2. Chen, Y., Luo, J., Yan, Y., Feng, L. (2013). Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl. Energy., 102, 1197–1204, doi: 10.1016/j.apenergy.2012.06.056
  3. Sevda, S., Dominguez-Benetton, X., Vanbroekhoven, K., De Wever, H., Sreekrishnan, T.R., Pant, D. (2013). High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl. Energy, 105, 194–206, doi: 10.1016/j.apenergy.2012.12.037
  4. Logan, B.E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete,W., Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40, 5181–5192, doi: 10.1021/es0605016
  5. Logan B.E., Regan, J.M. (2006). Microbial fuel cells—challenges and applications. Environ. Sci. Technol., 40, 5172–5180, doi: 10.1021/es0627592
  6. Liu, H., Cheng, S., Logan, B.E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol., 39, 658–662, doi: 10.1021/es048927c
  7. Hassan, S.H., Kim, Y.S., Oh, S.E. (2012). Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb. Technol., 51, 269–273, doi: 10.1016/j.enzmictec.2012.07.008
  8. Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I.M. (2005). Electricity generation from cysteine in a microbial fuel cell. Water Res., 39, 942–952, doi: 10.1016/j.watres.2004.11.019
  9. Rezaei, F., Richard, T.L., Brennan, R.A., Logan, B.E. (2007). Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. Environ. Sci. Technol., 41, 4053–4058, doi: 10.1021/es070426e
  10. Rabaey, K., Ossieur, W., Verhaege, M., Verstraete, W. (2005). Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol., 52, 515–523, doi: 10.2166/wst.2005.0561
  11. Zuo, Y., Maness, P.C., Logan. B.E. (2006). Electricity production from steam-exploded corn stover biomass. Energy Fuels, 20, 1716–1721, doi: 10.1021/ef060033l
  12. Hadiyanto, H., Christwardana, M., da Costa, C. (2019). Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources Part A., 1–12, doi: 10.1080/15567036.2019.1668085
  13. Lovley, D.R., & Phillips, E.J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol., 54, 1472–1480
  14. Christwardana, M., Kwon, Y. (2017). Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell. Bioresource Technol., 225, 175–182, doi: 10.1016/j.biortech.2016.11.051
  15. Schilirò, T., Tommasi, T., Armato, C., Hidalgo, D., Traversi, D., Bocchini, S., Gilli, G., Pirri, C.F. (2016). The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials. Energy, 106, 277–284, doi: 10.1016/j.energy.2016.03.004
  16. Bond, D.R., Lovley, D.R. (2005). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol., 71, 2186–2189, doi: 10.1128/AEM.71.4.2186-2189.2005
  17. Esmaeili, C., Ghasemi, M., Heng, L.Y., Has-san, S.H., Abdi, M.M., Daud, W.R.W., Ilbeygi, H., Ismail, A.F. (2014). Synthesis and application of polypyrrole/carrageenan nano-bio composite as a cathode catalyst in microbial fuel cells. Carbohydrate Polym., 114, 253–259, doi: 10.1016/j.carbpol.2014.07.072
  18. Ghasemi, M., Daud, W.R.W., Ismail, M., Rahimnejad, M., Ismail, A.F., Leong, J.X., Miskan, M., Liew, K.B. (2013). Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. Int. J. Hydrogen Energy, 38, 5480–5484, doi: 10.1016/j.ijhydene.2012.09.148
  19. Liu, H., Cheng, S., Huang, L., Logan, B.E. (2008). Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources, 179, 274–279, doi: 10.1016/j.jpowsour.2007.12.120
  20. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., Oh, S.E. (2015). Microbial fuel cell as new technology for bioelectricity generation: a review. Alex. Eng. J., 54, 745–756, doi: 10.1016/j.aej.2015.03.031
  21. Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I. (2017). Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources, 356, 225–244, doi: 10.1016/j.jpowsour.2017.03.109
  22. Petrus, L., Noordermeer, M.A. (2006). Biomass to biofuels, a chemical perspective. Green Chem., 8, 861–867, doi: 10.1039/B605036K
  23. Ragauskas, A.J., Nagy, M., Kim, D.H., Eckert, C.A., Hallett, J.P., Liotta, C.L. (2006). From wood to fuels: integrating biofuels and pulp production. Ind. Biotechnol., 2, 55–65, doi: 10.1089/ind.2006.2.55
  24. Popescu, M.C., Popescu, C.M., Lisa, G., Sakata, Y. (2011). Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct., 988, 65–72, doi: 10.1089/ind.2006.2.55
  25. Trzcinski, A.P., Stuckey, D.C. (2015). Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresource Technol., 185, 441–444, doi: 10.1016/j.biortech.2015.03.016
  26. ElMekawy, A., Diels, L., De Wever, H., Pant, D. (2013). Valorization of cereal based biorefinery byproducts: reality and expectations. Environ. Sci. Technol., 47, 9014–9027, doi: 10.1021/es402395g
  27. Philippidis G.P. (2018). Cellulose bioconversion technology. In Handbook on Bioethanol. London: Routledge; pp. 253-285
  28. Ahmad, F., Atiyeh, M.N., Pereira, B., Stephanopoulos, G.N. (2013). A review of cellulosic microbial fuel cells: performance and challenges. Biomass Bioenergy, 56, 179–188, doi: 10.1016/j.biombioe.2013.04.006
  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol., 96, 673–686, doi: 10.1016/j.biortech.2004.06.025
  30. Yang, B., Wyman, C.E. (2008). Pretreatment: the key to unlocking low‐cost cellulosic ethanol. Biofuels Bioprod. Biorefin., 2, 26–40, doi: 10.1002/bbb.49
  31. Krishnaraj, R.N., Berchmans, S., Pal, P. (2015). The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose, 22, 655–662, doi: 10.1007/s10570-014-0463-4
  32. Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technol., 74, 69–80, doi: 10.1016/S0960-8524(99)00142-X
  33. Dias, M.O., Junqueira, T.L., Cavalett, O., Pavanello, L.G., Cunha, M.P., Jesus, C.D.F., Filho, R.M., Bonomi, A. (2013). Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl. Energy, 109, 72–78, doi: 10.1016/j.apenergy.2013.03.081
  34. Rainey, T.J., Covey, G. (2016). Pulp and paper production from sugarcane bagasse. John Wiley & Sons, Inc., New Jersey
  35. Singh, K., Kumar, R., Chaudhary, V., Vaishali, Sunil, Arya, A.M., and Sharma, S. (2019). Sugarcane bagasse: Foreseeable biomass of bio‐products and biofuel: An overview. J. Pharmacog. Phytochem., 8, 2356–2360
  36. Sindhu, R., Gnansounou, E., Binod, P., Pandey, A. (2016). Bioconversion of sugarcane crop residue for value added products – An overview. Renew. Energy, 98, 203–215, doi: 10.1016/j.renene.2016.02.057
  37. Dávila, J.A., Hernández, V., Castro, E., Cardona, C.A. (2014). Economic and environmental assessment of syrup production. Colombian case. Bioresource Technol., 161, 84–90, doi: 10.1016/j.biortech.2014.02.131
  38. Schaetzle, O., Barrière, F., Baronian, K. (2008). Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci., 1, 607–620, doi: 10.1039/B810642H
  39. Hubenova Y., Mitov, M. (2015). Extracellular electron transfer in yeast-based biofuel cells: A review. Bioelectrochemistry, 106, 177–185, doi: 10.1016/j.bioelechem.2015.04.001
  40. Rossi, R., Cavina, M., Setti, L. (2016). Characterization of electron transfer mechanism in mediated microbial fuel cell by entrapped electron mediator in saccharomyces cerevisiae. Chem. Eng. Trans., 49, 559–564, doi: 10.3303/CET1649094
  41. Rossi, R., Fedrigucci, A., Setti, L. (2015). Characterization of electron mediated microbial fuel cell by Saccharomyces cerevisiae. Chem. Eng. Trans., 43, 337-342, doi: 10.3303/CET1543057
  42. Christwardana, M., Frattini, D., Accardo, G., Yoon, S.P., Kwon, Y. (2018). Optimization of glucose concentration and glucose/yeast ratio in yeast microbial fuel cell using response surface methodology approach. J. Power Sources, 402, 402–412, doi: 10.1016/j.jpowsour.2018.09.068
  43. Christwardana, M., Frattini, D., Accardo, G., Yoon, S.P., Kwon, Y. (2018). Effects of methylene blue and methyl red mediators on performance of yeast based microbial fuel cells adopting polyethylenimine coated carbon felt as anode. J. Power Sources, 396, 1–11, doi: 10.1016/j.jpowsour.2018.06.005
  44. Christwardana, M., Frattini, D., Accardo, G., Yoon, S.P., Kwon, Y. (2018). Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst. Appl. Energy, 222, 369–382, doi: 10.1016/j.apenergy.2018.03.193
  45. Christwardana, M., Frattini, D., Duarte, K.D., Accardo, G., Kwon, Y. (2019). Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells. Appl. Energy, 238, 239–248, doi: 10.1016/j.apenergy.2019.01.078
  46. Hynne, F., Danø, S., Sørensen, P.G. (2001). Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem., 94(1–2), 121–163, doi: 10.1016/S0301-4622(01)00229-0
  47. Li, Y., He, D., Niu, D., Zhao, Y. (2015). Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioproc. Biosys. Eng., 38(5), 863–869. doi: 10.1007/s00449-014-1329-8
  48. Pandey, A.K., Kumar, M., Kumari, S., Kumari, P., Yusuf, F., Jakeer, S., Naz, S., Chandna, P., Bhatnagar, I., Gaur, N.A. (2019). Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnol. Biofuels, 12, 40, doi: 10.1186/s13068-019-1379-x
  49. Lee, C.R., Sung, B.H., Lim, K.M., Kim, M.J., Sohn, M.J., Bae, J.H., Sohn, J.H. (2017). Co-fermentation using recombinant Saccharomyces cerevisiae yeast strains hyper-secreting different cellulases for the production of cellulosic bioethanol. Sci. Rep., 7, 1–14, doi: 10.1038/s41598-017-04815-1
  50. Christwardana, M., Handayani, A.S., Yudianti, R., Joelianingsih, J. (2021). Cellulose – Carrageenan Coated Carbon Felt as Potential Anode Structure for Yeast Microbial Fuel Cell. Int. J. Hydrogen Energy, 46, 6076-6086, doi: 10.1016/j.ijhydene.2020.05.265
  51. Huang, L., Zeng, R.J., Angelidaki, I. (2008). Electricity production from xylose using a mediator-less microbial fuel cell. Bioresource Technol., 99, 4178–4184, doi: 10.1016/j.biortech.2007.08.067
  52. Zhang, B., Zhao, H., Zhou, S., Shi, C., Wang, C., Ni, J. (2009). A novel UASB–MFC–BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresource Technol., 100, 5687–5693, doi: 10.1016/j.biortech.2009.06.045
  53. Kim, B.H., Park, H.S., Kim, H.J., Kim, G.T., Chang, I.S., Lee, J., Phung, N.T. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol., 63, 672–681, doi: 10.1007/s00253-003-1412-6
  54. Ghasemi, M., Daud, W.R.W., Hassan, S.H., Jafary, T., Rahimnejad, M., Ahmad, A., Yazdi, M.H. (2016). Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy, 41, 4872–4878, doi: 10.1016/j.ijhydene.2015.09.011
  55. Zhang, Y., Min, B., Huang, L., Angelidaki, I., (2009). Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl. Environ. Microbiol., 75, 3389–3395, doi: 10.1128/AEM.02240-08
  56. Hassan, S.H., Abd el Nasser, A.Z., Kassim, R.M. (2019). Electricity generation from sugarcane molasses using microbial fuel cell technologies. Energy, 178, 538–543, doi: 10.1016/j.energy.2019.04.087
  57. Rezaei, F., Xing, D., Wagner, R., Regan, J.M., Richard, T.L., Logan, B.E. (2009). Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol., 75, 3673–3678, doi: 10.1128/AEM.02600-08
  58. Ishii, S.I., Shimoyama, T., Hotta, Y., Watanabe, K. (2008). Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell. BMC Microbiol., 8, 6, doi: 10.1186/1471-2180-8-6
  59. Mohan, Y., Kumar, S.M.M., Das, D. (2008). Electricity generation using microbial fuel cells. Int. J. Hydrogen Energy, 33, 423–426, doi: 10.1016/j.ijhydene.2007.07.027
  60. Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Talebnia, F., Premier, G.C., Bakeri, G., Kim, J.R., Oh, S.E. (2012). Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol., 50, 575–580, doi: 10.1007/s12275-012-2135-0
  61. Gregoire, K.P., Becker, J.G. (2012). Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technol., 119, 208–215, doi: 10.1016/j.biortech.2012.05.075
  62. Rezaei, F., Richard, T.L., Logan, B.E. (2008). Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol. Bioeng., 101, 1163–1169, doi: 10.1002/bit.22015
  63. Sahu O. (2019). Sustainable and clean treatment of industrial wastewater with microbial fuel cell. Results Eng., 4, 100053, doi: 10.1016/j.rineng.2019.100053
  64. Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, R.A., Demir, G., Lewandowski, Z. (2006). Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ. Sci Technol., 40, 1062–1068, doi: 10.1021/es051180l
  65. Chandrasekhar, K., Amulya, K., Mohan, S.V. (2015). Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Manag., 45, 57–65, doi: 10.1016/j.wasman.2015.06.001
  66. Schröder U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 9, 2619–2629, doi: 10.1039/B703627M
  67. Raghavulu, S.V., Babu, P.S., Goud, R.K., Subhash, G.V., Srikanth, S., Mohan, S.V. (2012). Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Adv., 2, 677–688, doi: 10.1039/C1RA00540E
  68. Srikanth, S., Mohan, S.V., Sarma, P.N. (2010). Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Bioresource Technol., 101, 5337–5344, doi: 10.1016/j.biortech.2010.02.028
  69. do Nascimento, J.M., de Oliveira, J.D., Rizzo, A.C., Leite, S.G. (2019). Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol. Rep., 21, e00315, doi: 10.1016/j.btre.2019.e00315
  70. Lin, T.C., Chen, C. (2004). Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media. Process Biochemistry, 39, 1103–1109, doi: 10.1016/S0032-9592(03)00218-8
  71. Nisa, S.L. (2007). The production of fungal mannanase, cellulase and xylanase using palm kernel meal as a substrate. Walailak J. Sci. Technol., 4, 67–82

Last update: 2021-10-14 18:42:52

No citation recorded.

Last update: 2021-10-14 18:42:52

No citation recorded.