Catalytic Performance of TiO2–Carbon Mesoporous-Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant

*Mukhamad Nurhadi orcid scopus  -  Department of Chemical Education, Universitas Mulawarman, Indonesia
Ratna Kusumawardani scopus  -  Department of Chemical Education, Universitas Mulawarman, Indonesia
Teguh Wirawan  -  Chemistry Department, Universitas Mulawarman, Indonesia
Sumari Sumari  -  Chemistry Department, Universitas Negeri Malang, Indonesia
Sin Yuan Lai scopus  -  School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia and College of Chemistry and Chemical Engineering, Xiamen University, China
Hadi Nur scopus  -  Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Malaysia
Received: 10 Dec 2020; Revised: 3 Feb 2021; Accepted: 4 Feb 2021; Published: 31 Mar 2021; Available online: 25 Feb 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL:

Citation Format:
Cover Image

The catalytic performance of titania-supported carbon mesoporous-derived from fish bones (TiO2/CFB) has been investigated in styrene oxidation with aqueous H2O2. The preparation steps of (TiO2/CFB) catalyst involved the carbonization of fish bones powder at 500 °C for 2 h. followed by impregnation of titania using titanium(IV) isopropoxide (500 µmol) precursor, and calcined at 350 °C for 3 h. The physical properties of the adsorbents were characterized using Fourier transform infrared, X-ray diffraction (XRD), Scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and nitrogen adsorption-desorption studies. The catalytic test was carried out using styrene oxidation with H2O2 as an oxidant at room temperature for 24 h. Its catalytic activity was compared with Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts. It is demonstrated that the catalytic activity of TiO2/CFB catalyst has the highest compared to Fe2O3/CFB, CuO/CFB, TiO2, and CFB catalysts in the oxidation of styrene with styrene conversion ~23% and benzaldehyde selectivity ~90%. Kinetics of TiO2/CFB catalyzed oxidation of styrene has been investigated and mechanism for oxidation of styrene has been proposed. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (


Keywords: Titania; Fish bones; Carbon; Oxidation; Styrene; Hydrogen peroxide
Funding: Kemenristek/BRIN under contract Islamic development bank (IsDB) under contract contract number: 303/UN17.11/PL/2020

Article Metrics:

  1. Ito, S., Kon, Y., Nakashima, T., Hong, D., Konno, H., Ino, D., Sato, K. (2019). Titania-Catalyzed H2O2 Thermal Oxidation of Styrenes to Aldehydes. Molecules, 24(1), 1–9, doi: 10.3390/molecules24142520
  2. Zhang, L.-X., Hua, Z.-L., Dong, X.-P., Li, L., Chen, H.-R., Shi, J.-L. (2007). Preparation of highly ordered Fe-SBA-15 by physical-vapor-infiltration and their application to liquid phase selective oxidation of styrene. J. Mol. Catal. A Chem., 268, 155–162, doi: 10.1016/j.molcata.2006.12.027
  3. Wang, H., Qian, W., Chen, J., Wu, Y., Xu, X., Wang, J., Kong, Y. (2014). Spherical V-MCM-48: the synthesis, characterization and catalytic performance in styrene oxidation. RSC Advances, 4, 50832–50839. doi: 10.1039/c4ra08333d
  4. Yang, Y., Zhang, Y., Hao, S., Guan, J., Ding, H., Shang, F., Kan, Q. (2010). Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Appl. Catal. A: General, 381, 274–281, doi: 10.1016/j.apcata.2010.04.018
  5. Li, B., Zhu, Y., Jin, X. (2015). Synthesis ofcobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation. J. Solid State Chem., 221, 230–239, doi: 10.1016/j.jssc.2014.10.008
  6. Zhan, W., Guo, Y., Wang, Y., Guo, Y., Liu, X., Wang, Y., Lu, G. (2009). Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. J. Phys. Chem. C, 113(17), 7181–7185, doi: 10.1021/jp8101095
  7. Zou, H., Xiao, G., Chen, K., Peng, X. (2018). Noble metal free V2O5/g-C3N4 composite for selective oxidation of olefins using hydrogen peroxide as oxidant. Dalton Transactions, 47, 13565–13572, doi: 10.1039/C8DT02765J
  8. Zou, H., Hu, C., Chen, K., Xiao, G., Peng, X. (2018). Cobalt Vanadium Oxide Supported on Reduced Graphene Oxide for the Oxidation of Styrene Derivatives to Aldehydes with Hydrogen Peroxide as Oxidant. Synlett, 29, 2181–2184, doi: 10.1055/s-0037-1610630
  9. Shi, F., Tse, M. K., Pohl, M.-M., Br_ckner, A., Zhang, S., Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angew. Chem. Int. Ed, 46, 8866–8868, doi: 10.1002/anie.200703418
  10. Xie, L., Wang, H., Lu, B., Zhao, J., Cai, Q. (2018). Highly selective oxidation of styrene to benzaldehyde over Fe3O4 using H2O2 aqueous solution as oxidant. Reac. Kinet. Mech. Catal., 125, 743–756, doi: 10.1007/s11144-018-1429-6
  11. Milovac, D., Weigand, I., Kovaˇci´c, M., Ivankovi´c, M., Ivankovi´c, H. (2018). Highly porous hydroxyapatite derived from cuttle fish bone as TiO2 catalyst support. Proc. Appl. Ceram, 12(2), 136–142, doi: 10.2298/PAC1802136M
  12. Puma, G.L., Bono, A., Krishnaiah, D., Collin, J.G. (2008). Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J. Hazard. Mater, 157, 209–219, doi: 10.1016/j.jhazmat.2008.01.040
  13. Nurhadi, M., Chandren, S., Yuan, L.S., Ho, C.S., Mahlia, T.M.I., Nur, H. (2017). Titania-Loaded Coal Char as Catalyst in Oxidation of Styrene with Aqueous Hydrogen Peroxide. Int. J. Chem. Reactor Eng., 15(1), 1–11, doi: 10.1515/ijcre-2016-0088
  14. Nurhadi, M. (2017). Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bull. Chem. React. Eng. Catal., 12(1), 55–61, doi: 10.9767/bcrec.12.1.501.55-61
  15. Kusumawardani, R., Nurhadi, M., Wirhanuddin, Gunawan, R., Nur, H. (2019). Carbon-containing Hydroxyapatite Obtained from Fish Bone as Low-cost Mesoporous Material for Methylene Blue Adsorption. Bull. Chem. React. Eng. Catal., 14(3), 660–671, doi: 10.9767/bcrec.14.3.5365.660-671
  16. Nurhadi, M. (2017). utilization Low Rank Coal Bottom Ash as TiO2 Suport for Oxidation Catalyst of Styrene with Hydrogen Peroxide Aqueous. Key Eng. Mater., 733, 12–16, doi: 10.4028/
  17. Gheisari, H., Karamian, E., Abdellahi, M. (2015). A novel hydroxyapatite –Hardystonite nanocomposite ceramic. Ceram. Int., 41(41), 5967–5975, doi: 10.1016/j.ceramint.2015.01.033
  18. S´lo´sarczyk, A., Paszkiewicz, Z., Paluszkiewicz, C. (2005). FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J. Mol. Struct., 744–747, 657–661, doi: 10.1016/j.molstruc.2004.11.078
  19. Zhang, L., Yuan, F., Zhang, X., Yang, L. (2011). Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chem. Central J., 5, 75, doi: 10.1186/1752-153X-5-75
  20. Lousada, C.M., Yang, M., Nilsson, K., Jonsson, M. (2013). Catalytic decomposition of hydrogen peroxide on transition metaland lanthanide oxides. J. Mol. Catal. A Chem., 379, 178–184, doi: 10.1016/j.molcata.2013.08.017
  21. Liou, R.-M., Chen, S.-H. (2009). CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol. J. Hazard. Mater., 172, 498–506, doi: 10.1016/j.jhazmat.2009.07.012
  22. Lousada, C.u.M., Johansson, A.J., Brinck, T., Jonsson, M. (2012). Mechanism of H2O2 Decomposition on Transition Metal Oxide Surfaces. J. Physic. Chem. C, 116, 9533−9543, doi: 10.1021/jp300255h
  23. Lubis, S., Yuliati, L., Lee, S. L., Sumpono, I., Nur, H. (2012). Improvement of catalytic activity in styrene oxidation of carbon-coated titania by formation of porous carbon layer. Chem. Eng. J., 209, 468–493, doi: 10.1016/j.cej.2012.08.041
  24. Indira, V., Halligudi, S.B., Gopinathan, S., Gopinathan, C. (2001). Kinetics and Mechanism of Styrene Oxidation Using Transition Metal Substituted Dodecatungstophosphate. React. Kinet. Catal. Lett., 73(1), 99–107, doi: 10.1023/A:1013985123468
  25. Pei, J., Han, X., Lu, Y. (2015). Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst. Build. Environ., 84, 134–141, doi: 10.1016/j.buildenv.2014.11.002
  26. Tseng, T.K., Chu, H. (2001). The kinetics of catalytic incineration of styrene over a MnO_FeO catalyst. Scien. Total Environ., 275, 83–93, doi: 10.1016/S0048-9697(00)00856-1

Last update: 2021-04-20 14:39:35

No citation recorded.

Last update: 2021-04-20 14:39:36

No citation recorded.