skip to main content

Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

1Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation

2School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom

3Regional Technological Center, Tver State University, Tver, 170100, Russian Federation

Received: 3 Mar 2017; Revised: 18 Aug 2017; Accepted: 21 Aug 2017; Published: 2 Apr 2018; Available online: 22 Jan 2018.
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

In this paper, the commercial 5%Pd/C and 5%Pt/C catalysts and synthesized 5%Pt/MN-270 and 5%Pd/MN-270 were used in the hydrogenolysis of lignocellulosic material (softwood sawdust) to obtain liquid fuels in the form of hydrocarbons. As lignin has a very complex structure, anisole was used as a model compound. It was found that the use Pt-containing catalysts based on hypercrosslinked polystyrene in both processes of anisole and lignin-containing feedstock conversion allowed obtaining the highest yield of oxygen-free hydrocarbons (up to 96 wt. %). Besides, the polymer based catalysts showed high stability in hydrogenolysis process in comparison with the commercial carbon based catalysts. 

Fulltext View|Download
Keywords: Lignin; hydrogenolysis; depolimerization; biofuel
Funding: Russian Science Foundation (grant 15-13-20015) and the Russian Foundation for Basic Research (grant 18-08-00609 A)

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781-1788
  2. Borges da Silva, E.A., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E. (2009). An Integrated Process to Produce Vanillin and Lignin-based Polyurethanes from Kraft Lignin. Chem. Eng. Res. Des., 87: 1276-1292
  3. Kumar, C.R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., Barta, K., Heeres, H.J. (2015). Solvent Free Depolymerization of Kraft Lignin to Alkyl-Phenolics Using Supported NiMo and CoMo Catalysts. Green Chem., 17 (11): 4921-4930
  4. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015). Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev., 115 (21): 11559-11624
  5. Patil, P.T., Armbruster, U., Richter, M., Martin, A. (2011). Heterogeneously Catalyzed Hydroprocessing of Organiosolv Lignin in Sub- and Supercritical Solvents. En. Fuels, 25: 4713-4722
  6. Huber, G.W., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev., 106: 4044-4098
  7. Kamm, B., Kamm, M. (2004). Principles of Biorefineries. Appl. Microbiol. Biotechnol., 64: 137-145
  8. Bozell, J.J. (2014). Approaches to the Selective Catalytic Conversion of Lignin: A Grand Challenge for Biorefinery Development. Top. Curr. Chem., 353: 229-255
  9. Bulushev, D.A., Ross, J.R.H. (2011). Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review. Catalysis Today, 171: 1-13
  10. Horácek, J., Homola, F., Kubicková, I., Kubicka, D. (2012). Lignin to Liquids over Sulfided Catalysts. Catalysis Today, 179: 191-198
  11. Saidi, M., Rahimpour, M.R., Raeissi, S. (2015). Kinetics of Upgrading of Anisole as a Lignin-Derived Bio-oil with Hydrogen Catalyzed by Platinum Supported on Alumina. En. Fuel, 29: 3335-3344
  12. Jan, O., Marchand, R., Anjos, L.C.A., Seufitelli, G.V.S., Nikolla, E., Resende, F.L.P. (2015). Hydropyrolysis of Lignin Using Pd/HZSM-5. En. Fuel., 29 (3): 1793-1800
  13. Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T., Li, Q. (2015). From Lignin to Cycloparaffins and Aromatics: Directional Synthesis of Jet and Diesel Fuel Range Biofuels Using Biomass. Biores. Technol., 183: 10-17
  14. Kloekhorst, A., Heeres, H.J. (2015). Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts. Sust. Chem. Eng., 3 (9): 1905-1914
  15. Ferrini, P., Rinaldi, R. (2014). Catalytic Biorefining of Plant Biomass to Non-Pyrolytic Lignin Bio-Oil and Carbohydrates through Hydrogen Transfer Reactions. Angew. Chem. Int. Ed., 53: 1-7
  16. Huang, X., Koranyi, T.I., Boot, M.D., Hensen, E.J.M. (2014). Catalytic Depolymerization of Lignin in Supercritical Ethanol. Chem Sus Chem., 7: 2276-2288
  17. Murnieks, R., Kampars, V., Malins, K., Apseniece, L. (2014). Hydrotreating of Wheat Straw in Toluene and Ethanol. Biores. Technol., 163C: 106-111
  18. Sapunov, V.N., Stepacheva, A.A., Sulman, E.M., Wärnå, J., Mäki-Arvela, P., Sulman, M.G., Sidorov, A.I., Stein, B.D., Murzin, D.Yu., Matveeva, V.G. (2017). Stearic acid Hydrodeoxygenation over Pd Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. J. Ind. Eng. Chem., 46: 426-435
  19. Doluda, V.Yu., Sulman, E.M., Matveeva, V.G., Sulman, M.G., Bykov, A.V., Lakina, N.V., Sidorov, A.I., Valetsky, P.M., Bronstein, L.M. (2013). Phenol Catalytic Wet Air Oxidation Over Ru Nanoparticles Formed in Hypercrosslinked Polystyrene. Top. Catal., 56: 688-695
  20. Nikoshvili, L., Shimanskaya, E., Bykov, A., Yuranov, I., Kiwi–Minsker, L., Sulman, E. (2015). Selective Hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles Stabilized in Hypercrosslinked Polystyrene: Solvent Effect. Catalysis Today, 241, Part B: 179-188

Last update:

No citation recorded.

Last update:

No citation recorded.