Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

DOI: https://doi.org/10.9767/bcrec.13.1.969.74-81
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 03-03-2017
Published: 02-04-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

In this paper, the commercial 5%Pd/C and 5%Pt/C catalysts and synthesized 5%Pt/MN-270 and 5%Pd/MN-270 were used in the hydrogenolysis of lignocellulosic material (softwood sawdust) to obtain liquid fuels in the form of hydrocarbons. As lignin has a very complex structure, anisole was used as a model compound. It was found that the use Pt-containing catalysts based on hypercrosslinked polystyrene in both processes of anisole and lignin-containing feedstock conversion allowed obtaining the highest yield of oxygen-free hydrocarbons (up to 96 wt. %). Besides, the polymer based catalysts showed high stability in hydrogenolysis process in comparison with the commercial carbon based catalysts. Copyright © 2018 BCREC Group. All rights reserved

Received: 3rd March 2017; Revised: 18th August 2017; Accepted: 21st August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018). Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 74-81 (doi:10.9767/bcrec.13.1.969.74-81)

 

Keywords

Lignin; hydrogenolysis; depolimerization; biofuel

  1. Elena Shimanskaya 
    Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
  2. Аntonina A. Stepacheva  Scholar
    Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
  3. Esther Sulman 
    Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
  4. Evgeny Rebrov 
    1Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russia 2School of Engineering, University of Warwick, Coventry, CV4 7AL,, United Kingdom
  5. Valentina Matveeva 
    1Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026 Russia 3Regional Technological Center, Tver State University, Tver, 170100, Russian Federation
  1. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781-1788.
  2. Borges da Silva, E.A., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E. (2009). An Integrated Process to Produce Vanillin and Lignin-based Polyurethanes from Kraft Lignin. Chem. Eng. Res. Des., 87: 1276-1292.
  3. Kumar, C.R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., Barta, K., Heeres, H.J. (2015). Solvent Free Depolymerization of Kraft Lignin to Alkyl-Phenolics Using Supported NiMo and CoMo Catalysts. Green Chem., 17 (11): 4921-4930.
  4. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015). Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev., 115 (21): 11559-11624.
  5. Patil, P.T., Armbruster, U., Richter, M., Martin, A. (2011). Heterogeneously Catalyzed Hydroprocessing of Organiosolv Lignin in Sub- and Supercritical Solvents. En. Fuels, 25: 4713-4722.
  6. Huber, G.W., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev., 106: 4044-4098.
  7. Kamm, B., Kamm, M. (2004). Principles of Biorefineries. Appl. Microbiol. Biotechnol., 64: 137-145.
  8. Bozell, J.J. (2014). Approaches to the Selective Catalytic Conversion of Lignin: A Grand Challenge for Biorefinery Development. Top. Curr. Chem., 353: 229-255.
  9. Bulushev, D.A., Ross, J.R.H. (2011). Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review. Catalysis Today, 171: 1-13.
  10. Horácek, J., Homola, F., Kubicková, I., Kubicka, D. (2012). Lignin to Liquids over Sulfided Catalysts. Catalysis Today, 179: 191-198.
  11. Saidi, M., Rahimpour, M.R., Raeissi, S. (2015). Kinetics of Upgrading of Anisole as a Lignin-Derived Bio-oil with Hydrogen Catalyzed by Platinum Supported on Alumina. En. Fuel, 29: 3335-3344.
  12. Jan, O., Marchand, R., Anjos, L.C.A., Seufitelli, G.V.S., Nikolla, E., Resende, F.L.P. (2015). Hydropyrolysis of Lignin Using Pd/HZSM-5. En. Fuel., 29 (3): 1793-1800.
  13. Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T., Li, Q. (2015). From Lignin to Cycloparaffins and Aromatics: Directional Synthesis of Jet and Diesel Fuel Range Biofuels Using Biomass. Biores. Technol., 183: 10-17.
  14. Kloekhorst, A., Heeres, H.J. (2015). Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts. Sust. Chem. Eng., 3 (9): 1905-1914.
  15. Ferrini, P., Rinaldi, R. (2014). Catalytic Biorefining of Plant Biomass to Non-Pyrolytic Lignin Bio-Oil and Carbohydrates through Hydrogen Transfer Reactions. Angew. Chem. Int. Ed., 53: 1-7.
  16. Huang, X., Koranyi, T.I., Boot, M.D., Hensen, E.J.M. (2014). Catalytic Depolymerization of Lignin in Supercritical Ethanol. Chem Sus Chem., 7: 2276-2288
  17. Murnieks, R., Kampars, V., Malins, K., Apseniece, L. (2014). Hydrotreating of Wheat Straw in Toluene and Ethanol. Biores. Technol., 163C: 106-111.
  18. Sapunov, V.N., Stepacheva, A.A., Sulman, E.M., Wärnå, J., Mäki-Arvela, P., Sulman, M.G., Sidorov, A.I., Stein, B.D., Murzin, D.Yu., Matveeva, V.G. (2017). Stearic acid Hydrodeoxygenation over Pd Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. J. Ind. Eng. Chem., 46: 426-435.
  19. Doluda, V.Yu., Sulman, E.M., Matveeva, V.G., Sulman, M.G., Bykov, A.V., Lakina, N.V., Sidorov, A.I., Valetsky, P.M., Bronstein, L.M. (2013). Phenol Catalytic Wet Air Oxidation Over Ru Nanoparticles Formed in Hypercrosslinked Polystyrene. Top. Catal., 56: 688-695.
  20. Nikoshvili, L., Shimanskaya, E., Bykov, A., Yuranov, I., Kiwi–Minsker, L., Sulman, E. (2015). Selective Hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles Stabilized in Hypercrosslinked Polystyrene: Solvent Effect. Catalysis Today, 241, Part B: 179-188.