Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

Elena Shimanskaya -  Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
*Аntonina A. Stepacheva -  Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
Esther Sulman -  Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russian Federation
Evgeny Rebrov -  1Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026, Russia 2School of Engineering, University of Warwick, Coventry, CV4 7AL,, United Kingdom
Valentina Matveeva -  1Department of Biotechnology and Chemistry, Tver State Technical University, Tver, 170026 Russia 3Regional Technological Center, Tver State University, Tver, 170100, Russian Federation
Received: 3 Mar 2017; Published: 2 Apr 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image

In this paper, the commercial 5%Pd/C and 5%Pt/C catalysts and synthesized 5%Pt/MN-270 and 5%Pd/MN-270 were used in the hydrogenolysis of lignocellulosic material (softwood sawdust) to obtain liquid fuels in the form of hydrocarbons. As lignin has a very complex structure, anisole was used as a model compound. It was found that the use Pt-containing catalysts based on hypercrosslinked polystyrene in both processes of anisole and lignin-containing feedstock conversion allowed obtaining the highest yield of oxygen-free hydrocarbons (up to 96 wt. %). Besides, the polymer based catalysts showed high stability in hydrogenolysis process in comparison with the commercial carbon based catalysts. Copyright © 2018 BCREC Group. All rights reserved

Received: 3rd March 2017; Revised: 18th August 2017; Accepted: 21st August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018

How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018). Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 74-81 (doi:10.9767/bcrec.13.1.969.74-81)


Lignin; hydrogenolysis; depolimerization; biofuel

Article Metrics:

  1. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C. (2007). Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86: 1781-1788.
  2. Borges da Silva, E.A., Zabkova, M., Araújo, J.D., Cateto, C.A., Barreiro, M.F., Belgacem, M.N., Rodrigues, A.E. (2009). An Integrated Process to Produce Vanillin and Lignin-based Polyurethanes from Kraft Lignin. Chem. Eng. Res. Des., 87: 1276-1292.
  3. Kumar, C.R., Anand, N., Kloekhorst, A., Cannilla, C., Bonura, G., Frusteri, F., Barta, K., Heeres, H.J. (2015). Solvent Free Depolymerization of Kraft Lignin to Alkyl-Phenolics Using Supported NiMo and CoMo Catalysts. Green Chem., 17 (11): 4921-4930.
  4. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015). Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chem. Rev., 115 (21): 11559-11624.
  5. Patil, P.T., Armbruster, U., Richter, M., Martin, A. (2011). Heterogeneously Catalyzed Hydroprocessing of Organiosolv Lignin in Sub- and Supercritical Solvents. En. Fuels, 25: 4713-4722.
  6. Huber, G.W., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev., 106: 4044-4098.
  7. Kamm, B., Kamm, M. (2004). Principles of Biorefineries. Appl. Microbiol. Biotechnol., 64: 137-145.
  8. Bozell, J.J. (2014). Approaches to the Selective Catalytic Conversion of Lignin: A Grand Challenge for Biorefinery Development. Top. Curr. Chem., 353: 229-255.
  9. Bulushev, D.A., Ross, J.R.H. (2011). Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review. Catalysis Today, 171: 1-13.
  10. Horácek, J., Homola, F., Kubicková, I., Kubicka, D. (2012). Lignin to Liquids over Sulfided Catalysts. Catalysis Today, 179: 191-198.
  11. Saidi, M., Rahimpour, M.R., Raeissi, S. (2015). Kinetics of Upgrading of Anisole as a Lignin-Derived Bio-oil with Hydrogen Catalyzed by Platinum Supported on Alumina. En. Fuel, 29: 3335-3344.
  12. Jan, O., Marchand, R., Anjos, L.C.A., Seufitelli, G.V.S., Nikolla, E., Resende, F.L.P. (2015). Hydropyrolysis of Lignin Using Pd/HZSM-5. En. Fuel., 29 (3): 1793-1800.
  13. Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T., Li, Q. (2015). From Lignin to Cycloparaffins and Aromatics: Directional Synthesis of Jet and Diesel Fuel Range Biofuels Using Biomass. Biores. Technol., 183: 10-17.
  14. Kloekhorst, A., Heeres, H.J. (2015). Catalytic Hydrotreatment of Alcell Lignin Using Supported Ru, Pd, and Cu Catalysts. Sust. Chem. Eng., 3 (9): 1905-1914.
  15. Ferrini, P., Rinaldi, R. (2014). Catalytic Biorefining of Plant Biomass to Non-Pyrolytic Lignin Bio-Oil and Carbohydrates through Hydrogen Transfer Reactions. Angew. Chem. Int. Ed., 53: 1-7.
  16. Huang, X., Koranyi, T.I., Boot, M.D., Hensen, E.J.M. (2014). Catalytic Depolymerization of Lignin in Supercritical Ethanol. Chem Sus Chem., 7: 2276-2288
  17. Murnieks, R., Kampars, V., Malins, K., Apseniece, L. (2014). Hydrotreating of Wheat Straw in Toluene and Ethanol. Biores. Technol., 163C: 106-111.
  18. Sapunov, V.N., Stepacheva, A.A., Sulman, E.M., Wärnå, J., Mäki-Arvela, P., Sulman, M.G., Sidorov, A.I., Stein, B.D., Murzin, D.Yu., Matveeva, V.G. (2017). Stearic acid Hydrodeoxygenation over Pd Nanoparticles Embedded in Mesoporous Hypercrosslinked Polystyrene. J. Ind. Eng. Chem., 46: 426-435.
  19. Doluda, V.Yu., Sulman, E.M., Matveeva, V.G., Sulman, M.G., Bykov, A.V., Lakina, N.V., Sidorov, A.I., Valetsky, P.M., Bronstein, L.M. (2013). Phenol Catalytic Wet Air Oxidation Over Ru Nanoparticles Formed in Hypercrosslinked Polystyrene. Top. Catal., 56: 688-695.
  20. Nikoshvili, L., Shimanskaya, E., Bykov, A., Yuranov, I., Kiwi–Minsker, L., Sulman, E. (2015). Selective Hydrogenation of 2-methyl-3-butyn-2-ol over Pd-nanoparticles Stabilized in Hypercrosslinked Polystyrene: Solvent Effect. Catalysis Today, 241, Part B: 179-188.