Microwave Assisted Expeditious and Green Cu(II)-Clay Catalyzed Domino One-Pot Three Component Synthesis of 2H-indazoles

License URL: http://creativecommons.org/licenses/by-sa/4.0

A simple and efficient synthesis of 2H-indazoles is achieved from 2-primary amines, bromobenzaldehydes and sodium azide through domino condensation, C–N and N–N bond formations, catalyzed by a heterogeneous Cu(II)-Clay catalyst. The recyclable heterogeneous Cu(II)-Clay catalyst exhibited a remarkable activity for the title reaction without any additives. An assortment of structurally diverse 2H-indazoles were prepared in good to excellent yields from easily available starting materials by using this protocol. The Cu(II)-Clay catalyst was characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunauer-Emmett-Teller (BET) techniques. Copyright © 2018 BCREC Group. All rights reserved
Received: 24th February 2017; Revised: 8th August 2017; Accepted: 23rd August 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018
How to Cite: Dar, B.A., Safvi, S.W., Rizvi, M.A. (2018). Microwave Assisted Expeditious and Green Cu(II)-Clay Catalyzed Domino One-Pot Three Component Synthesis of 2H-indazoles. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 82-88 (doi:10.9767/bcrec.13.1.963.82-88)
Article Metrics:
- Kharitonov, V.G., Sharma, V.S., Magde, D., Koesling, D. (1999). Kinetics and Equilibria of Soluble Guanylate Cyclase Ligation by CO: Effect of YC-1. Biochemistry, 38: 10699-10706.
- Morie, T., Harada, H., Kato, S. (1997). Convenient Synthesis of N-(2,2-dimethyl-1,3-dioxan-5-yl)-1 H-indazole-3-carboxamide, the Intermediate of 5-HT3 Receptor Antagonist. Synthetic Communication. 27: 559-566.
- Fang, Y.L., Jin, C.L., Li, J.H., Tsang, M.H., Sheng, C.T., Che, M.T., Chin, C.W., Fong, C.C., Sheng, C.K. (2001). Synthesis of 1-benzyl-3-(5‘-hydroxymethyl-2‘-furyl)indazole Analogues as Novel Antiplatelet Agents. Journal of Medicinal Chemistry, 44: 3746-3749.
- Bonde, N., Gaikwad. (2004). Synthesis and Preliminary Evaluation of Some Pyrazine Containing Thiazolines and Thiazolidinones as Antimicrobial Agents. Bioorganic and Medicinal Chemistry, 12: 2151-2161.
- Haung, L.J., Shih, M.L., Chen, H.S., Pan, S.L., Teng, C.M., Lee, F.Y., Kuo, S.C. (2006). Synthesis of N2-(substituted benzyl)-3-(4-methylphenyl)indazoles as Novel Anti-angiogenic Agents. Bioorganic and Medicinal Chemistry, 14: 528-536.
- Vijay, A.M., Antony, J.A., Chandrakumar, R.R., Koilraj, M., Sujatha, R., Shanmugsundram, P. (2008). Synthesis and Biological Activities of A Novel Series of Indazole Derivatives. Bioscience and Biotechnology Research, 5: 313-318.
- Ye, M., Edmunds, A.J., Morris, J.A., Sale, D., Zhang, Y., Yu, J.Q. (2013). A Robust Protocol for Pd(II)-catalyzed C-3 Arylation of (1H) Indazoles and Pyrazoles: Total Synthesis of Nigellidine Hydrobromide. Chemical Science, 4: 2374-2379
- Yadav, J.S., Reddy, B.V.S., Sadasive, K., Satheesh, G. (2002). 1,4-Conjugate Addition of Allyltrimethylsilane to α,β-unsaturated Ketones. Tetrahedron Letters, 43: 9695-9697.
- Kazzouli, S.E., Bouissane, L., Khouili, M., Guillaumet, G. (2005). Synthesis of 4-Substituted and 3,4-Disubstituted Indazole Derivatives by Palladium-Mediated Cross-Coupling Reactions. Tetrahedron Letters, 46: 6163-6167.
- Nathan, E.G., Liuqing, W., Gary, E.A. (2014). Regioselective Synthesis of 2H-Indazoles Using a Mild, One-Pot Condensation–Cadogan Reductive Cyclization. Organic Letters, 16: 3114-3117.
- Yuesi, F., Chunrui, W., Richard, C., Larock, Fenf.S. (2011). Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes. Journal of Organic Chemistry, 76: 8840-8851.
- Goeminne, A., Scammells, P.J., Devine, S.M., Flynn, B.L. (2010). Richter cyclization and Co-cyclization Reactions of Triazene-masked Diazonium Ions. Tetrahedron Letters, 51: 6882-6885.
- Kim, K.Y., Shin, J.T., Lee, K.S., Cho, C.G. (2004). Cu(I) Mediated One-pot Synthesis of Azobenzenes from Bis-Boc Aryl Hydrazines and Aryl Halides. Tetrahedron Letters, 45:117-120.
- Kiyofumi, I., Mika, K., Takashi, Y., Yukari, A., Kou, H., Takao, S. (2007). Synthesis of 3-substituted Indazoles and Benzoisoxazoles via Pd-catalyzed Cyclization Reactions: Application to the Synthesis of Nigellicine. Tetrahedron, 63: 2695-2711.
- Basuvaraj, S.K., Amarajothi, D., Kasi, P. (2014). K10 Montmorillonite Clays as Environmentally Benign Catalysts for Organic Reactions. Catalysis Science and Technology, 4: 2378-2396.
- Dar, B.A., Varsha, S., Amrita, B., Wagay, M.A., Baldev, S. (2015). An Expeditious N,N-dibenzylation of Anilines under Ultrasonic Irradiation Conditions Using Low Loading Cu(II)-Clay Heterogeneous Catalyst. Tetrahedron Letters, 56: 136-141.
- Dar, B.A., Nalini, P., Snehil, S., Purshotum, K., Farooqui, M., Baldev, S. (2015) Solvent-free, Scalable and Expeditious Synthesis of Benzanilides under Microwave Irradiation Using Clay Doped with Palladium Nanoparticles as A Recyclable and Efficient Catalyst. Green Chemistry Letters and Reviews, 8: 1-8.
- Dar, B.A., Sara, K., Wani, T.A., Mir, M.A., Farooqui, M. (2015). Ceria-based Mixed Oxide Supported CuO: An Efficient Heterogeneous Catalyst for Conversion of Cellulose to Sorbitol. Green and Sustainable Chemistry, 5: 15-24.
- Dar, B.A., Dangroo, N.A., Amit, G., Aarti, W., Khuroo, M.A., Vishwakarma, R.A., Baldev, S. (2014). Iodine Catalyzed Solvent-free Cross-dehydrogenative Coupling of Arylamines and H-Phosphonates for the Synthesis of N-Arylphosphoramidates under Atmospheric Conditions. Tetrahedron Letters, 55: 1544-1548.
- Dar, B.A., Amrita, B., Amit, S., Parduman, R.S., Anish, L., Singh, A.P., Meena, S., Baldev, S. (2013). Ultrasound Promoted Efficient and Green Protocol for the Expeditious Synthesis of 1,4 Disubstituted 1,2,3-triazoles Using Cu(II) Doped Clay as Catalyst. Applied Clay Science, 80–81: 351-357
- Dar, B.A., Prince, B., Singh, A.P., Anish, L., Parduman, R.S., Meena, S., Baldev, S. (2013). Clay Entrapped Cu(OH)x as An Efficient Heterogeneous Catalyst for Ipso-Hydroxylation of Arylboronic Acids. Applied Catalysis A: General, 466: 60-67.
- Mellouk, S., Cherifi, S., Sassi, M., Marouf-Khelifa, K., Bengueddach, A., Schott, J., Khelifa, A. (2009). Intercalation of Halloysite from Djebel Debagh (Algeria) and Adsorption of Copper Ions. Applied Clay Science, 44: 230-236.
- Deng, C., Hu, H., Ge, X., Han, C., Zhao, D., Shao, G. (2011). One-pot Sonochemical Fabrication of Hierarchical Hollow CuO Submicrospheres. Ultrasonics Sonochemistry, 18: 932-937.
- Zhao, D., Zhou, J., Liu, N. (2006). Preparation and Characterization of Mingguang Palygorskite Supported with Silver and Copper for Antibacterial Behaviour. Applied Clay Science, 33: 161-170.
- Alvarez-Puebla, R.A., Aisa, C., Blasco, J.J., Echeverría, C., Mosquera, B., Garrido, J. (2004). Copper Heterogeneous Nucleation on A Palygorskitic Clay: an XRD, EXAFS and Molecular Modeling Study. Applied Clay Science, 25:103-110
- Yong, K., Manian, R.K., Namjin, P., Yumi, H., Sunwoo, L. (2011). Copper-Catalyzed, One-Pot, Three-Component Synthesis of Benzimidazoles by Condensation and C–N Bond Formation. Journal of Organic Chemistry, 76: 9577-9583
Last update: 2021-01-24 14:34:54
Last update: 2021-01-24 14:34:55
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)