skip to main content

The Role of Concentration Ratio of TTiP:AcAc on the Photocatalytic Activity of TiO2 Thin Film in Reducing Degradation Products of Used Frying Oil

1Physics Education Department, Universitas PGRI Semarang, Jl. Sidodadi Timur No.24, Semarang 50125, Indonesia

2Physics Department, Universitas Diponegoro, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia

Received: 20 Feb 2017; Revised: 27 May 2017; Accepted: 30 May 2017; Published: 1 Dec 2017; Available online: 27 Oct 2017.
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

The TiO2 thin film has been applied to reduce degradation products (free fatty acid/FFA and peroxide value/PV) in used frying oil under ultraviolet (UV) light irradiation. FFA and PV are degradation products in used frying oil that can cause various diseases in human. In this study, the TiO2 thin films were made from precursor solution with concentration ratio of titanium tetraisopropoxide (TTiP) and acetylacetone (AcAc) of 1:1, 1:2, 2:1, 2:3, and 3:2. The aim of this study is to investigate the effect of concentration ratio of TTiP and AcAc on the photocatalytic activity of TiO2 thin film in reducing FFA and PV of used frying oil. The spray coating method was used to deposit precursor solution of TiO2 onto glass substrate at 450 oC. All TiO2 thin films consist of spherical-like grain with dominant structure of TiO2 rutile. The band gap energy of TiO2 thin films was in the range 3.11-3.16 eV. Concentration ratio of TTiP and AcAc of 2:3 results in TiO2 thin film with highest photocatalytic activity in reducing FFA and PV of used frying oil. 

Fulltext View|Download
Keywords: TiO2 thin film; TTiP; AcAc; Used frying oil; Photocatalytic activity
Funding: ministry of Research, Technology, and Higher Education of The Republic of Indonesia

Article Metrics:

  1. Shi, H., Magaye, R., Castranova, V., Zhao, J. (2013). Titanium Dioxide Nanoparticle: A Review of Current Toxicological Data. Particle and Fiber Technology, 10(15): 1-33
  2. Ioana C.G, Moldovan, Z. (2009). Photodegradation of The Indoor Organic Pollutants by UV Irradiation using TiO2 Catalysts. Journal of Physics: Conference Series, 182
  3. Miller, R., Fox, R. (1993). Treatment of Organic Contaminants in Air by Photocatalytic Oxidation: A Commer-cialization Perspective, in: Photocatalytic Purification and Treatment of Water and Air. Proceedings of the 1st International Conference on TiO2, 573-578
  4. Cathy, M., Jeanette, M.C.R., Detlef, W.B., Peter, K.J.R. (2007). The Application of TiO2 Photocatalysis for Disinfection of Water Contaminated with Pathogenic Micro Organisms: A Review. Research on Chemical Intermediates, 33(3): 359-375
  5. Mukhlish,M. Z.B., Najnin, F., Rahman, M.M., Uddin, M.J. (2013). Photocatalytic Degradation of Different Dyes Using TiO2 with High Surface Area: A Kinetic Study. Journal of Scientific Research, 5(2): 301-314
  6. Wannahari, R., Nordin, M.F.N. (2012a). Reduction of Peroxide Value in Used Palm Cooking Oil Using Bagasse Adsorbent. American International Journal of Contemporary Research, 2(1): 185-191
  7. Wannahari, R., Nordin, M.F.N. (2012b). The Recovery of Used Palm Cooking Oil Using Bagasse as Adsorbent. American Journal of Engineering and Applied Science, 5(1): 59-62
  8. Somnuk, C., Bhundit, I., Chanin, T. (2013). Cytotoxicity of Used Frying Oil Recovered by Different Adsorbents. Kasetsart Journal, 47: 874-884
  9. Oliveira, P.M., Farias, L.M., Villarreyes, J.A.M., celo G. D’Oca, M.G.M. (2016). Eco-friendly Pretreatment of Oil with High Free Fatty Acid Content Using a Sulfamic Acid/Ethanol System. Journal of the American Oil Chemists' Society, 93(10): 1393-1397
  10. Wang, K., Zhang, X., Zhang, J., Zhang, Z., Fan, C., Han, P. (2016). Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst. Journal of Molecular Graphics and Modelling, 66: 41-46
  11. Hayyan, A., Hasyim, M.A., Hayyan, M., Qing, K.G. (2014). Biodiesel Production from Acidic Crude Palm Oil Using Perchloric Acid. Energy Procedia, 61: 2745-2749
  12. Choe, E., Min, D.B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Food Science and Food Safety, 5 (4): 169-186
  13. Kaleem, A., Aziz, S., Iqtedar, M., Abdullah, R., Aftab, M., Rashid, F., Shakoori, F.R., Naz, N. (2015). Investigating Changes and Effect of Peroxide Values in Cooking Oils Subject to Light and Heat. Fuuast J. Biol., 5(2): 191-196
  14. Kaltsum, U., Kurniawan, A.F., Nurhasanah, I., Priyono, P. (2016). Reduction of Peroxide Value and Free Fatty Acid Value of Used frying Oil Using TiO2 Thin Film Photocatalyst, Bulletin of Chemical Reaction Engineering & Catalysis, 11(3): 369-375
  15. Kaltsum, U., Kurniawan, A.F., Priyono, Nurhasanah, I. (2016). A Comparison of TiO2 Thin Film Photocatalyst using Sunlight and UV Light in Reducing Free Fatty Acid and Peroxide Value of Used Frying Oil, Proceeding of International Conference on Mathematics, Sciences, and Education, Indonesia
  16. Gebhardt, B. (1996). Oils and Fats in SnackFoods. New York, USA: John Wiley & Sons Inc
  17. Totani, N., Burenjargal, M., Yawata, M., Ojiri, Y. (2008). Chemical Properties and Cytotoxicity of Thermally Oxidized Oil, J. Oleo. Sci, 57: 153-160
  18. Bhattacharya, A.B., Sajilata, M.G., Tiwari, S.R., Singhal, R. (2008). Regeneration of Thermally Polymerized Frying Oils with Adsorbents. Food Chemistry, 110: 562-570
  19. Somnuk, C., Bhundit, I., Chanin, T. (2013). Cytotoxicity of Used Frying Oil Recovered by Different Adsorbents. Kasetsart Journal, 47: 874-884
  20. Chopra, M., Schrenk, D. (2011). Dioxintoxicity, Aryl Hydrocarbon Receptor Signaling, and Apoptosis-Persistent Pollutants Affect Programmed Cell Death. Critical Review in Toxycology, 41(4): 292-320
  21. Kummerow, F.A. (2013). Interaction betweenSphingomyelin and Oxysterols Contributes to Atherosclerosis and Sudden Death. American Journal of Cardiovascular Desease, 3: 17-26
  22. Srivastava, S., Singh, M., George, J., Bhui, K., Saxena, A.M., Shukla, Y. (2010). Genotoxic and Carcinogenic Risk Associated with The Dietary Consumption of Repeatedly Heated Coconut Oil, Brit. J. Nutr, 104: 1343-1352
  23. Lowe, S.W., Lin, A.W. (2000). Apoptosis in Cancer. Carcinogenesis, 21: 485-495
  24. Oja, I. Mere, A., Krunks, M., Nisumaa, R., Solterbeck, C-H., Es-Souni, M. (2006). Structural and Electrical Characterization of TiO2 Films Grown by Spray Pyrolysis. Thin Solid Films, 515: 674-677
  25. American Oil Chemists’ Society. (2009). AOCS Official Method Ca 5a-40, Free Fatty Acids. AOCS Press
  26. American Oil Chemists’ Society. (2009). AOCS Official Method Cd 8b-90, Peroxide Value Acetic Acid-Isooctane Method. AOCS Press
  27. Monshi, A., Foroughi, M.R., Monshi, M.R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2: 154-160
  28. Samoom, N.A., Atty, H.K., Ashoor, A.A.W., Hateef, A.A. (2013). Effect Thickness on Structural and Optical Properties of NiO Thin Films. International Journal of Physics, Chemistry and Mathematics, 1(1): 1-8
  29. Valencia, S., Marín, J.M., Restrepo, G. (2010). Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Materials Science Journal, 4: 9-14
  30. Welte, A., Waldauf, C., Brabec, C., Wellmann, P. (2008). Application of Optical for the Investigation of Electronic and Structural Properties of Sol-Gel Processed TiO Films. Thin Solid Films, 516(20): 7256-7259
  31. Monllor, S.D., Gomez, R., González, H.M., Salvador, P. (2007). The “Diret-Indirect” Model: An Alternative Kinetic Approach in Heterogeneous Photocatalysis based on the Degree of Interaction of Dissolved Pollutant Species with the Semiconductor Surface. Catal. Today, 129: 247-255
  32. Luan, X., Wang, Y. (2014). Preparation and Photocatalytic Activity of Ag/Bamboo-Type TiO2 Nanotube Composite Electrodes for Methylene Blue Degradation. Materials Science in Semiconductor Processing, 25: 43-51
  33. Kraeutler, B., Bard, A.J. (1978). Heterogeneous Photocatalytic Synthesis of Methane from Acetic Acid - New Kolbe Reaction Pathway. J. Am. Chem. Soc., 100(7): 2239-2240
  34. James C. Moore, Robert Louderand Cody V. Thompson. (2014). Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process. Coatings, 4: 651-669
  35. Hanini, F., Bouabellou, A., Bouachiba, Y.,Kermiche, F., Taabouche, A., Hemissi, M.,Lakhdar, D. (2013). Structural, Optical and Electrical Properties of TiO2 Thin Films Synthesized by Sol-Gel Technique. IOSR Journal of Engineering, 3(6): 21-28
  36. Lin, C.P., Chen, H., Nakaruk, A., Koshy, P., Sorrell, C.C. (2013). Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films. Energy Procedia, 34: 627-636
  37. Addamo, M., Bellardita, M., Paola, A.D., Palmisano, L. (2006). Preparation and Photoactivity of Nanostructured Anatase, Rutile and Brookite TiO2 Thin Films. Chemical Communications. 47: 4943-4945
  38. Francisco, M.S.P, Mastelaro, V.R. (2012). Inhibition of the Anatase Rutile Phase Transformation with Addition of CeO2 to CuO-TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies. Chem. Mater, 14: 2514-2518

Last update: 2021-07-28 21:43:18

No citation recorded.

Last update: 2021-07-28 21:43:18

  1. Enhanced visible and ultraviolet light-induced gas-phase photocatalytic activity of tio2 thin films modified by increased amount of acetylacetone in precursor solution for spray pyrolysis

    Spiridonova J.. Catalysts, 10 (9), 2020. doi: 10.3390/catal10091011