The Role of Concentration Ratio of TTiP:AcAc on the Photocatalytic Activity of TiO2 Thin Film in Reducing Degradation Products of Used Frying Oil

DOI: https://doi.org/10.9767/bcrec.12.3.951.430-436
Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 20-02-2017
Published: 28-10-2017
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

The TiO2 thin film has been applied to reduce degradation products (free fatty acid/FFA and peroxide value/PV) in used frying oil under ultraviolet (UV) light irradiation. FFA and PV are degradation products in used frying oil that can cause various diseases in human. In this study, the TiO2 thin films were made from precursor solution with concentration ratio of titanium tetraisopropoxide (TTiP) and acetylacetone (AcAc) of 1:1, 1:2, 2:1, 2:3, and 3:2. The aim of this study is to investigate the effect of concentration ratio of TTiP and AcAc on the photocatalytic activity of TiO2 thin film in reducing FFA and PV of used frying oil. The spray coating method was used to deposit precursor solution of TiO2 onto glass substrate at 450 oC. All TiO2 thin films consist of spherical-like grain with dominant structure of TiO2 rutile. The band gap energy of TiO2 thin films was in the range 3.11-3.16 eV. Concentration ratio of TTiP and AcAc of 2:3 results in TiO2 thin film with highest photocatalytic activity in reducing FFA and PV of used frying oil. Copyright © 2017 BCREC Group. All rights reserved

Received: 20th February 2017; Revised: 27th May 2017; Accepted: 30st May 2017; Available online: 27th October 2017; Published regularly: December 2017

How to Cite: Kaltsum, U., Kurniawan, A.F., Nurhasanah, I., Priyono, P. (2017). The Role of Concentration Ratio of TTiP:AcAc on the Photocatalytic Activity of TiO2 Thin Film in Reducing Degradation Products of Used Frying Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 430-436 (doi:10.9767/bcrec.12.3.951.430-436)

 

Keywords

TiO2 thin film; TTiP; AcAc; Used frying oil; Photocatalytic activity

  1. Ummi Kaltsum  Scholar
    Physics Education Department, Universitas PGRI Semarang, Jl. Sidodadi Timur No.24, Semarang 50125,, Indonesia
    Physics education department
  2. Affandi Faisal Kurniawan  Scholar
    Physics Education Department, Universitas PGRI Semarang, Jl. Sidodadi Timur No.24, Semarang 50125,, Indonesia
    Physics education department
  3. Iis Nurhasanah 
    Physics Department, Universitas Diponegoro, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia
    Physics department
  4. Priyono Priyono 
    Physics Department, Universitas Diponegoro, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia
    Physics department
  1. Shi, H., Magaye, R., Castranova, V., Zhao, J. (2013). Titanium Dioxide Nanoparticle: A Review of Current Toxicological Data. Particle and Fiber Technology, 10(15): 1-33.
  2. Ioana C.G, Moldovan, Z. (2009). Photodegradation of The Indoor Organic Pollutants by UV Irradiation using TiO2 Catalysts. Journal of Physics: Conference Series, 182.
  3. Miller, R., Fox, R. (1993). Treatment of Organic Contaminants in Air by Photocatalytic Oxidation: A Commer-cialization Perspective, in: Photocatalytic Purification and Treatment of Water and Air. Proceedings of the 1st International Conference on TiO2, 573-578.
  4. Cathy, M., Jeanette, M.C.R., Detlef, W.B., Peter, K.J.R. (2007). The Application of TiO2 Photocatalysis for Disinfection of Water Contaminated with Pathogenic Micro Organisms: A Review. Research on Chemical Intermediates, 33(3): 359-375.
  5. Mukhlish,M. Z.B., Najnin, F., Rahman, M.M., Uddin, M.J. (2013). Photocatalytic Degradation of Different Dyes Using TiO2 with High Surface Area: A Kinetic Study. Journal of Scientific Research, 5(2): 301-314.
  6. Wannahari, R., Nordin, M.F.N. (2012a). Reduction of Peroxide Value in Used Palm Cooking Oil Using Bagasse Adsorbent. American International Journal of Contemporary Research, 2(1): 185-191.
  7. Wannahari, R., Nordin, M.F.N. (2012b). The Recovery of Used Palm Cooking Oil Using Bagasse as Adsorbent. American Journal of Engineering and Applied Science, 5(1): 59-62.
  8. Somnuk, C., Bhundit, I., Chanin, T. (2013). Cytotoxicity of Used Frying Oil Recovered by Different Adsorbents. Kasetsart Journal, 47: 874-884
  9. Oliveira, P.M., Farias, L.M., Villarreyes, J.A.M., celo G. D’Oca, M.G.M. (2016). Eco-friendly Pretreatment of Oil with High Free Fatty Acid Content Using a Sulfamic Acid/Ethanol System. Journal of the American Oil Chemists' Society, 93(10): 1393-1397.
  10. Wang, K., Zhang, X., Zhang, J., Zhang, Z., Fan, C., Han, P. (2016). Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst. Journal of Molecular Graphics and Modelling, 66: 41-46
  11. Hayyan, A., Hasyim, M.A., Hayyan, M., Qing, K.G. (2014). Biodiesel Production from Acidic Crude Palm Oil Using Perchloric Acid. Energy Procedia, 61: 2745-2749.
  12. Choe, E., Min, D.B. (2006). Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Food Science and Food Safety, 5 (4): 169-186.
  13. Kaleem, A., Aziz, S., Iqtedar, M., Abdullah, R., Aftab, M., Rashid, F., Shakoori, F.R., Naz, N. (2015). Investigating Changes and Effect of Peroxide Values in Cooking Oils Subject to Light and Heat. Fuuast J. Biol., 5(2): 191-196.
  14. Kaltsum, U., Kurniawan, A.F., Nurhasanah, I., Priyono, P. (2016). Reduction of Peroxide Value and Free Fatty Acid Value of Used frying Oil Using TiO2 Thin Film Photocatalyst, Bulletin of Chemical Reaction Engineering & Catalysis, 11(3): 369-375.
  15. Kaltsum, U., Kurniawan, A.F., Priyono, Nurhasanah, I. (2016). A Comparison of TiO2 Thin Film Photocatalyst using Sunlight and UV Light in Reducing Free Fatty Acid and Peroxide Value of Used Frying Oil, Proceeding of International Conference on Mathematics, Sciences, and Education, Indonesia.
  16. Gebhardt, B. (1996). Oils and Fats in SnackFoods. New York, USA: John Wiley & Sons Inc.
  17. Totani, N., Burenjargal, M., Yawata, M., Ojiri, Y. (2008). Chemical Properties and Cytotoxicity of Thermally Oxidized Oil, J. Oleo. Sci, 57: 153-160.
  18. Bhattacharya, A.B., Sajilata, M.G., Tiwari, S.R., Singhal, R. (2008). Regeneration of Thermally Polymerized Frying Oils with Adsorbents. Food Chemistry, 110: 562-570.
  19. Somnuk, C., Bhundit, I., Chanin, T. (2013). Cytotoxicity of Used Frying Oil Recovered by Different Adsorbents. Kasetsart Journal, 47: 874-884.
  20. Chopra, M., Schrenk, D. (2011). Dioxintoxicity, Aryl Hydrocarbon Receptor Signaling, and Apoptosis-Persistent Pollutants Affect Programmed Cell Death. Critical Review in Toxycology, 41(4): 292-320.
  21. Kummerow, F.A. (2013). Interaction betweenSphingomyelin and Oxysterols Contributes to Atherosclerosis and Sudden Death. American Journal of Cardiovascular Desease, 3: 17-26.
  22. Srivastava, S., Singh, M., George, J., Bhui, K., Saxena, A.M., Shukla, Y. (2010). Genotoxic and Carcinogenic Risk Associated with The Dietary Consumption of Repeatedly Heated Coconut Oil, Brit. J. Nutr, 104: 1343-1352.
  23. Lowe, S.W., Lin, A.W. (2000). Apoptosis in Cancer. Carcinogenesis, 21: 485-495.
  24. Oja, I. Mere, A., Krunks, M., Nisumaa, R., Solterbeck, C-H., Es-Souni, M. (2006). Structural and Electrical Characterization of TiO2 Films Grown by Spray Pyrolysis. Thin Solid Films, 515: 674-677.
  25. American Oil Chemists’ Society. (2009). AOCS Official Method Ca 5a-40, Free Fatty Acids. AOCS Press.
  26. American Oil Chemists’ Society. (2009). AOCS Official Method Cd 8b-90, Peroxide Value Acetic Acid-Isooctane Method. AOCS Press.
  27. Monshi, A., Foroughi, M.R., Monshi, M.R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 2: 154-160.
  28. Samoom, N.A., Atty, H.K., Ashoor, A.A.W., Hateef, A.A. (2013). Effect Thickness on Structural and Optical Properties of NiO Thin Films. International Journal of Physics, Chemistry and Mathematics, 1(1): 1-8.
  29. Valencia, S., Marín, J.M., Restrepo, G. (2010). Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment. The Open Materials Science Journal, 4: 9-14
  30. Welte, A., Waldauf, C., Brabec, C., Wellmann, P. (2008). Application of Optical for the Investigation of Electronic and Structural Properties of Sol-Gel Processed TiO Films. Thin Solid Films, 516(20): 7256-7259.
  31. Monllor, S.D., Gomez, R., González, H.M., Salvador, P. (2007). The “Diret-Indirect” Model: An Alternative Kinetic Approach in Heterogeneous Photocatalysis based on the Degree of Interaction of Dissolved Pollutant Species with the Semiconductor Surface. Catal. Today, 129: 247-255.
  32. Luan, X., Wang, Y. (2014). Preparation and Photocatalytic Activity of Ag/Bamboo-Type TiO2 Nanotube Composite Electrodes for Methylene Blue Degradation. Materials Science in Semiconductor Processing, 25: 43-51
  33. Kraeutler, B., Bard, A.J. (1978). Heterogeneous Photocatalytic Synthesis of Methane from Acetic Acid - New Kolbe Reaction Pathway. J. Am. Chem. Soc., 100(7): 2239-2240.
  34. James C. Moore, Robert Louderand Cody V. Thompson. (2014). Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process. Coatings, 4: 651-669.
  35. Hanini, F., Bouabellou, A., Bouachiba, Y.,Kermiche, F., Taabouche, A., Hemissi, M.,Lakhdar, D. (2013). Structural, Optical and Electrical Properties of TiO2 Thin Films Synthesized by Sol-Gel Technique. IOSR Journal of Engineering, 3(6): 21-28.
  36. Lin, C.P., Chen, H., Nakaruk, A., Koshy, P., Sorrell, C.C. (2013). Effect of Annealing Temperature on the Photocatalytic Activity of TiO2 Thin Films. Energy Procedia, 34: 627-636.
  37. Addamo, M., Bellardita, M., Paola, A.D., Palmisano, L. (2006). Preparation and Photoactivity of Nanostructured Anatase, Rutile and Brookite TiO2 Thin Films. Chemical Communications. 47: 4943-4945.
  38. Francisco, M.S.P, Mastelaro, V.R. (2012). Inhibition of the Anatase Rutile Phase Transformation with Addition of CeO2 to CuO-TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies. Chem. Mater, 14: 2514-2518.