Modification of Mordenite Characters by H2C2O4 and/or NaOH Treatments and Its Catalytic Activity Test in Hydrotreating of Pyrolyzed α-Cellulose

Triyono Triyono scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
*Wega Trisunaryanti scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Yessi Wydia Putri  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Dyah Ayu Fatmawati scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Uswatul Chasanah  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia
Received: 22 Nov 2020; Revised: 8 Jan 2021; Accepted: 9 Jan 2021; Published: 31 Mar 2021; Available online: 17 Jan 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL:

Citation Format:
Cover Image

The research about modification of mordenite characteristics has been performed by H2C2O4 and/or NaOH treatments and catalytic activity tests in hydrotreating of pyrolyzed a-cellulose. Commercial mordenite (HSZ-604OA) as mordenite control (HM) immersed in 0.05, 0.5, and 1.0 M H2C2O4 at 70 °C for three hours resulting in HM-0.05, HM-0.5, and HM-1. The four mordenites were immersed in 0.1 M NaOH for 15 minutes resulting in BHM, BHM-0.05, BHM-0.5, and BHM-1. The catalysts obtained were analyzed by XRD, SAA, ICP, and acidity test. The catalytic activity of the mordenites was evaluated in hydrotreating of pyrolyzed a-cellulose using stainless steel reactor with an H2 gas flow rate of 20 mL.min1 at 450 °C for two hours with a catalyst: feed weight ratio of 1:60. The liquid products obtained from the hydrotreating were analyzed using GC-MS. The research results showed that the H2C2O4 and/or NaOH treatment towards the mordenites increased Si/Al ratio and decreased crystallinity. The acidity of mordenites decreased along with the increase of the Si/Al ratio. The average pore diameter of BHM, BHM-0.05, BHM-0.5, and BHM-1 mordenites were 2.898; 3.005; 3.792; 7.429 nm, respectively. The BHM-0.5 mordenite showed the highest catalytic activity in generating liquid product (88.88 wt%) and selectivity toward propanol (4.87 wt%). The BHM-1 mordenite showed catalytic activity in generating liquid product (41.16 wt%) and selectivity toward ethanol (1.21 wt%) and 2-heptyne (4.36 wt%). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Keywords: H2C2O4 treatment; NaOH treatment; α-cellulose hydrotreating; mordenite; mesoporous structure
Funding: Universitas Gadjah Mada (PTUPT 2020 Contract No.: 2876/UN1.DITLIT/ DITLIT/PT/2020)

Article Metrics:

  1. Verboekend, D., Nuttens, N., Locus, R., Van Aelst, J., Verolme, P., Groen, J., Pérez Ramírez, J., Sels, B. (2016). Synthesis, Characterisation, and Catalytic Evaluation of Hierarchical Faujasite Zeolites: Milestones, Challenges, and Future Directions. Chemical Society Reviews, 45(12), 3331−3352, doi: 10.1039/C5CS00520E
  2. Li, Y., Li, L., Yu, J. (2017). Applications of Zeolites in Sustainable Chemistry. Chem, 3(6), 928−949, doi: 10.1016/j.chempr.2017.10.009
  3. Zhao, J., Wang, G., Qin, L., Li, H., Chen, Y., Liu, B. (2016). Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catalysis Communications, 73, 98–102, doi: 10.1016/j.catcom.2015.10.020
  4. Abildstrom, J.O., Kegnaes, M., Hytoft, G., Mielby, J., Kegnaes, S. (2016). Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles. Microporous and Mesoporous Materials, 225, 232−237, doi: 10.1016/j.micromeso.2015.12.015
  5. Tian, F., Wu, Y., Shen, Q., Li, X., Chen, Y., Meng, C. (2013). Effect of Si/Al Ratio on Mesopore Formation for Zeolite Beta Via NaOH Treatment and The Catalytic Performance in Α-Pinene Isomerization and Benzoylation of Naphthalene. Microporous and Mesoporous Materials, 173, 129−138, doi: 10.1016/j.micromeso.2013.02.021
  6. Octaviani, S., Krisnandi, Y.K., Abdullah, I., Sihombing, R. (2012). The effect of Alkaline Treatment to the Structure of ZSM5 Zeolites. Makara Journal of Science, 16(3), 155−162, doi: 10.7454/mss.v16i3.1476
  7. Wu, Y., Tian, F., Liu, J., Song, D., Jia, C., Chen, Y. (2012). Enhanced Catalytic Isomerization of α-Pinene Over Mesoporous Zeolite Beta of Low Si/Al Ratio by NaOH Treatment. Microporous and Mesoporous Materials, 162, 168−174, doi: 10.1016/j.micromeso.2012.06.027
  8. Yoo, W.C., Zhang, X., Tsapatsis, M., Stein, A. (2012). Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 149, 149−157, doi: 10.1016/j.micromeso.2011.08.014
  9. Hapsari, M.Y., Trisunaryanti, W., Falah, I.I., Permata, M.L. (2020). Coating of Pd and Co on Mordenite for a Catalyst of Hydrotreating of Cashew Nut Shell Liquid into Biofuel. Indonesian Journal of Chemistry, 20(5), 1092−1100, doi: 10.22146/ijc.48633
  10. Handhoyo, R., Prijatama, H., Sofiyah, S., Nurlaela, I., Yusianita, N., Amelia, R., Komala, R. (2005). Increasing the Si/Al Ratio Natural Zeolite Mordenite as Basic Material of Catalyst. Jurnal Zeolit Indonesia, 4(1), 10−18
  11. Pastvova, J., Kaucky, D., Moravkova, J., Rathousky, J., Sklenak, S., Vorokhta, M., Brabec, L., Pilar, R., Jakubec, I., Tabor, E., Klein, P., Sazama, P. (2017). Effect of enhanced accessibility of acid sites in micromesoporous mordenite zeolites on hydroisomerization of n-hexane. ACS Catalysis, 7(9), 5781–5795, doi: 10.1021/acscatal.7b01696
  12. Yusniyanti, F., Trisunaryanti, W., Triyono, T. (2020). Acid-Alkaline Treatment of Mordenite and Its Catalytic Activity in the Hydrotreatment of Bio-oil. Indonesian Journal of Chemistry, 41 (2), 87-95, doi: 10.17146/aij.2015.382
  13. Isikgor, F.H., Becer, C.R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6, 4497−4559, doi: 10.1039/C5PY00263J
  14. Huber, T., Mussig, J., Curnow, O., Pang, S., Bickerton, S., Staiger, M.P. (2011). A critical review of all-cellulose composites. Journal of Materials Science, 47, 1171−1186, doi: 10.1007/s10853-011-5774-3
  15. Zhao, Y., Deng, L., Liao, B., Fu, Y., Guo, Q. (2010). Aromatics Production via Catalytic Pyrolysis of Pyrolytic Lignin from Bio-oil. Energy Fuels, 24(10), 5735−5740, doi: 10.1021/ef100896q
  16. Ying, W., Tanja, E., Zecevic, J. (2015). Tailoring and visualing the Pore Architecture of Hierarchical Zeolites. Chemical Society Reviews, 44, 7234−7235, doi: 10.1039/C5CS00155B
  17. Lutz, W. (2014). Zeolite Y: Synthesis, Modification, and Properties-A Case Revisited, Advances in Materials Science and Engineering, 2014, 1−20, doi: 10.1155/2014/724248
  18. Groen, J.C., Sano, T., Moulijn, J.A., Ramirez, J.P. (2007). Alkaline-mediated Mesoporous Mordenite Zeolites for Acid-catalyzed Conversions. Journal of Catalysis, 251, 21−27, doi: 10.1016/j.jcat.2007.07.020
  19. Mei, C., Wen, P., Liu, Z., Liu, H., Yang, W., Xie, Z., Hua, W., Gao, Z. (2008). Selective production of propylene from methanol: mesoporosity development in high silica HZSM-5. Journal of Catalysis, 258, 243−249, doi: 10.1016/j.jcat.2008.06.019
  20. Silaghi, M., Chizallet, C., Raybaud, P. (2014). Challenges on Molecular Aspects of Dealumination and Desilication of Zeolites. Microporous and Mesoporous Materials, 191, 82−96, doi: 10.1016/j.micromeso.2014.02.040
  21. Silaghi, M., Chizallet, C., Sauer, J., Raybaud, P. (2016). Dealumination mechanisms of zeolites and extra-framework aluminum confinement. Journal of Catalysis, 339, 242−255, doi: 10.1016/j.jcat.2016.04.021
  22. Rahbari, Z.V., Khosravan, M., Kharat, A.N. (2017). Dealumination of Mordenite Zeolite and Its Catalytic Performance Evaluation in m-Xylene Isomerization Reaction. Bulletin of the Chemical Society of Ethiopia, 31(2), 281−289, doi: 10.4314/bcse.v31i2.9
  23. Pimsuta, M., Neramittagapong, A., Prayoonpokarach, S., Wittayakun, J. (2012). Desilication of NaZSM-5 and Utilization as Support of Fe for Phenol Hydroxylation. International Journal of Chemical Engineering and Applications, 3(2), 86−91
  24. Silaghi, M., Chizallet, C., Petracovschi, E., Kerber, T., Sauer, J., Raybaud, P. (2015). Regioselectivity of Al-O Bond Hydrolysis during Zeolites Dealumination Unified by Bronsted-Evans-Polanyi Relationship. ACS Catalysis, 5, 11−15, doi: 10.1039/C1CY00150G
  25. Verboekend, D., Perez-Ramirez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879−890, doi: 10.1016/j.jcat.2007.07.020
  26. Groen, J.C., Sano, T., Moulijn, J.A., Ramirez, J.P. (2007). Alkaline-mediated Mesoporous Mordenite Zeolites for Acid-catalyzed Conversions, Journal of Catalysis, 251, 21−27, doi: 10.31788/RJC.2020.1315529
  27. Permata, M.L., Trisunaryanti, W., Falah, I.I., Hapsari, M.T., Fatmawati, D.A. (2020). The effect of nickel content impregnated on zeolite toward catalytic activity and selectivity for hydrotreating of cashew nut shell liquid oil. Rasayan Journal of Chemistry, 13(1), 772−779, doi: 10.1021/jp305358y
  28. Triyono, T., Trisunaryanti, W., Ristiana, D.D., Hastuti, L.P. (2019), Kinetic Study of α-cellulose Hydrocrcaking using Ni and Pd Supported on Mordenite Catalysts. Oriental Journal of Chemistry, 35(2), 643−647, doi: 10.13005/ojc/350219
  29. Huber, G., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044−4098, doi: 10.1021/cr068360d
  30. Vogt, E., Weckhuysen, B. (2015). Fluid Catalytic Cracking; recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 44(20), 7342−7370, doi: 10.1039/C5CS00376H
  31. Trisunaryanti, W., Triyono, T., Armunanto, R., Hastuti, L.P., Ristiana, D.D., Ginting, R.V. (2018). Hydrocracking of α-cellulose using Co, Ni, and Pd Supported on Mordenite Catalysts. Indonesian Journal of Chemistry, 18(1), 166−172, doi: 10.22146/ijc.26491
  32. Paixão, V.E. (2010). Modification of MOR by desilication treatments: Structural, textural and acidic characterization. Microporous and Mesoporous Materials, 131, 350–357, doi: 10.1016/j.micromeso.2010.01.013
  33. Owen, K., Coley, T., Weaver, C.S. (2007). Automotive Fuels Reference Book. SAE International, ISBN 978-1-56091-589-8

Last update: 2021-04-21 20:07:35

No citation recorded.

Last update: 2021-04-21 20:07:36

No citation recorded.