Highly Selective Au/ZnO via Colloidal Deposition for CO2 Hydrogenation to Methanol: Evidence of AuZn Role

*Hasliza Bahruji  -  Centre of Advanced Material and Energy Science, University Brunei Darussalam, Brunei Darussalam
Mshaal Almalki  -  Department of Chemistry, Imam Abdul Rahman Bin Faisal University, Saudi Arabia
Norli Abdullah  -  Universiti Pertahanan Nasional Malaysia, Malaysia
Received: 18 Nov 2020; Revised: 19 Jan 2021; Accepted: 19 Jan 2021; Published: 31 Mar 2021; Available online: 15 Mar 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Gold, Au nanoparticles were deposited on ZnO, Al2O3, and Ga2O3 via colloidal method in order to investigate the role of support for CO2 hydrogenation to methanol. Au/ZnO was also produced using impregnation method to investigate the effect of colloidal method to improve methanol selectivity. Au/ZnO produced via sol immobilization showed high selectivity towards methanol meanwhile impregnation method produced Au/ZnO catalyst with high selectivity towards CO. The CO2 conversion was also influenced by the amount of Au weight loading. Au nanoparticles with average diameter of 3.5 nm exhibited 4% of CO2 conversion with 72% of methanol selectivity at 250 °C and 20 bar. The formation of AuZn alloy was identified as active sites for selective CO2 hydrogenation to methanol. Segregation of Zn from ZnO to form AuZn alloy increased the number of surface oxygen vacancy for CO2 adsorption to form formate intermediates. The formate was stabilized on AuZn alloy for further hydrogenation to form methanol.  The use of Al2O3 and Ga2O3 inhibited the formation of Au alloy, and therefore reduced methanol production. Au/Al2O3 showed 77% selectivity to methane, meanwhile Au/Ga2O3 produced 100% selectivity towards CO. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Au nanoparticles; ZnO catalyst; CO2 hydrogenation; methanol
Funding: University Brunei Darussalam under contract UBD University Research Grant (UBD/RSCH/URC/RG(b)/2019/012)

Article Metrics:

  1. Olah, G.A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636–2639, doi: 10.1002/anie.200462121
  2. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen, F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.-L., Tovar, M., Fischer, R.W., Nørskov, J.K., Schlögl, R. (2012). The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts. Science, 336(6083), 893, doi: 10.1126/science.1219831
  3. Speight, J.G. (2011). Chapter 8 - Hydrocarbons from Synthesis Gas. In J.G. Speight (Ed.), Handbook of Industrial Hydrocarbon Processes (pp. 281-323). Gulf Professional Publishing. doi: 10.1016/B978-0-7506-8632-7.10008-8
  4. Kattel, S., Ramírez, P.J., Chen, J.G., Rodriguez, J.A., Liu, P. (2017). Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 355(6331), 1296, doi: 10.1126/science.aal3573
  5. Jiang, X., Koizumi, N., Guo, X., Song, C. (2015). Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 170–171, 173–185, doi: 10.1016/j.apcatb.2015.01.010
  6. Edwards, J.H. (1995). Potential sources of CO2 and the options for its large-scale utilisation now and in the future. Catalysis Today, 23(1), 59–66, doi: 10.1016/0920-5861(94)00081-C
  7. Bahruji, H., Guan, S., Puthiyapura, V.K. (2016). Precious Metal Catalysts for Sustainable Energy and Environmental Remediation. In Modern Developments in Catalysis (pp. 211-251). World Scientific (Europe). doi: 10.1142/9781786341228_0007
  8. Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M.K., Sefidkon, F., Klemeš, J.J., Baxter, L.L. (2017). Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends. Renewable and Sustainable Energy Reviews, 80, 1292–1311, doi: 10.1016/j.rser.2017.05.204
  9. Zhang, X., Liu, J.-X., Zijlstra, B., Filot, I.A.W., Zhou, Z., Sun, S., Hensen, E.J.M. (2018). Optimum Cu nanoparticle catalysts for CO2 hydrogenation towards methanol. Nano Energy, 43, 200–209, doi: 10.1016/j.nanoen.2017.11.021
  10. Bahruji, H., Bowker, M., Jones, W., Hayward, J., Ruiz Esquius, J., Morgan, D.J., Hutchings, G.J. (2017). PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions, 197, 309–324, doi: 10.1039/C6FD00189K
  11. Bond, G.C. (2016). Hydrogenation by gold catalysts: an unexpected discovery and a current assessment. Gold Bulletin, 49(3), 53–61, doi: 10.1007/s13404-016-0182-8
  12. Bahruji, H., Bowker, M., Hutchings, G., Dimitratos, N., Wells, P., Gibson, E., Jones, W., Brookes, C., Morgan, D., Lalev, G. (2016). Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 343, 133–146, doi: 10.1016/j.jcat.2016.03.017
  13. Hartadi, Y., Widmann, D., Behm, R.J. (2015). CO2 Hydrogenation to Methanol on Supported Au Catalysts under Moderate Reaction Conditions: Support and Particle Size Effects. ChemSusChem, 8(3), 456–465, doi: 10.1002/cssc.201402645
  14. Abdel-Mageed, A.M., Klyushin, A., Knop-Gericke, A., Schlögl, R., Behm, R.J. (2019). Influence of CO on the Activation, O-Vacancy Formation, and Performance of Au/ZnO Catalysts in CO2 Hydrogenation to Methanol. The Journal of Physical Chemistry Letters, 10(13), 3645–3653, doi: 10.1021/acs.jpclett.9b00925
  15. Pawinrat, P., Mekasuwandumrong, O., Panpranot, J. (2009). Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications, 10(10), 1380–1385, doi: 10.1016/j.catcom.2009.03.002
  16. Derrouiche, S., La Fontaine, C., Thrimurtulu, G., Casale, S., Delannoy, L., Lauron-Pernot, H., Louis, C. (2016). Unusual behaviour of Au/ZnO catalysts in selective hydrogenation of butadiene due to the formation of a AuZn nanoalloy. Catalysis Science & Technology, 6(18), 6794–6805, doi: 10.1039/C5CY01664A
  17. Borissov, D., Pareek, A., Renner, F.U., Rohwerder, M. (2010). Electrodeposition of Zn and Au–Zn alloys at low temperature in an ionic liquid. Physical Chemistry Chemical Physics, 12(9), 2059–2062, doi: 10.1039/B919669B
  18. Wang, T., Jin, B., Jiao, Z., Lu, G., Ye, J., Bi, Y. (2014). Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. Journal of Materials Chemistry A, 2(37), 15553–15559, doi: 10.1039/C4TA02960G
  19. Bahruji, H., Armstrong, R.D., Ruiz Esquius, J., Jones, W., Bowker, M., Hutchings, G.J. (2018). Hydrogenation of CO2 to Dimethyl Ether over Brønsted Acidic PdZn Catalysts. Industrial & Engineering Chemistry Research, 57(20), 6821–6829, doi: 10.1021/acs.iecr.8b00230
  20. Bahruji, H., Esquius, J.R., Bowker, M., Hutchings, G., Armstrong, R.D., Jones, W. (2018). Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol. Topics in Catalysis, 61(3), 144–153, doi: 10.1007/s11244-018-0885-6
  21. Shen, W.J., Jun, K.W., Choi, H.S., Lee, K.W. (2000). Thermodynamic Investigation of Methanol and Dimethyl Ether Synthesis from CO2 Hydrogenation. Korean Journal of Chemical Engineering, 17(2), 210–216, doi: 10.1007/BF02707145
  22. Sholeha, N.A., Jannah, L., Rohma, H.N., Widiastuti, N., Prasetyoko, D., Jalil, A.A., Bahruji, H. (2020). Synthesis of Zeolite Nay from Dealuminated Metakaolin as Ni Support for CO2 Hydrogenation to Methane. Clays and Clay Minerals, 68(5), 513–523, doi: 10.1007/s42860-020-00089-3
  23. Guilera, J., del Valle, J., Alarcón, A., Díaz, J.A., Andreu, T. (2019). Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. Journal of CO2 Utilization, 30, 11–17, doi: 10.1016/j.jcou.2019.01.003
  24. Strunk, J., Kähler, K., Xia, X., Comotti, M., Schüth, F., Reinecke, T., Muhler, M. (2009). Au/ZnO as catalyst for methanol synthesis: The role of oxygen vacancies. Applied Catalysis A: General, 359(1), 121–128, doi: 10.1016/j.apcata.2009.02.030

Last update: 2021-04-20 17:23:53

No citation recorded.

Last update: 2021-04-20 17:23:55

No citation recorded.