skip to main content

Syngas Production via Methane Dry Reforming over La-Ni-Co and La-Ni-Cu Catalysts with Spinel and Perovskite Structures

1Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene, BP 32 El Alia, 16111Bab Ezzouar, Alger, Algeria

2Faculté des Sciences, Département Sciences de la Matière, Université d’Alger 1, 2 Rue Didouche Mourad, Alger centre 16000, Alger, Algeria

3Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé, UMR 7515 CNRS, Université de Strasbourg, Groupe “Énergies et Carburants pour un Environnement durable”, 25 rue Becquerel, 67087 Strasbourg Cedex 2,, France

4 Laboratoire des Procédés pour Matériaux, Energie, Eau et Environnement, Faculté des Sciences et des Sciences Appliquées, Université de Bouira, rue Drissi Yahia, 10000 Bouira, Algeria

View all affiliations
Received: 1 Nov 2020; Revised: 18 Dec 2020; Accepted: 19 Dec 2020; Available online: 26 Dec 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

In this paper, the catalytic properties of La-Ni-M (M = Co, Cu) based materials in dry reforming of methane (DRM) for syngas (CO + H2) production, were studied in the temperature range 773−1073 K. The LaNi0.9M0.1O3 and La2Ni0.9M0.1O4 (M = Co, Cu and Ni/M = 0.9/0.1) catalysts were prepared by partial substitution of Ni by Co or Cu using sol-gel method then characterized by XRD, H2-TPR and N2 physisorption. The XRD analysis of fresh catalysts showed, in the case of Co-substitution, the formation of La-Ni and La-Co perovskite and spinel structures, while only LaNiO3 and La2NiO4 phases were observed for the Cu-substituted samples. The substitution of these two structures by copper decreases the reduction temperature compared to cobalt. The reactivity results showed that the partial substitution of nickel by copper decreases the methane activation temperature, whereas a better stability of catalytic activity and syngas production was obtained via the cobalt-substituted catalysts, which is due to a synergistic effect between Ni and Co. The TPO analysis carried out on the spent catalysts indicated that the lowest carbon deposition was obtained for the cobalt substituted samples. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (



Fulltext View|Download
Keywords: Perovskite; Spinel; Transition metals; Dry reforming; Syngas
Funding: Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS), Alger Algérie

Article Metrics:

  1. Wood, D.A., Nwaoha, C., Towler, B.F. (2012). Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J. Nat. Gas. Sci. Eng., 9, 196−208. doi: 10.1016/j.jngse.2012.07.001
  2. Iglesias, I., Forti, M., Baronetti, G., Marino, F. (2019). Zr-enhanced stability of ceria based supports for methane steam reforming at severe reaction conditions. Int. J. Hydrogen. Energ., 44, 8121−8132. doi: 10.1016/j.ijhydene.2019.02.070
  3. Messaoudi, H., Thomas, S., Djaidja, A., Slyemi, S., Barama, A. (2018). Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane. J. CO2 Util., 24, 40−49. doi: 10.1016/j.jcou.2017.12.002
  4. Messaoudi, H., Thomas, S., Djaidja, A., Slyemi, S., Chebout, R., Barama, S., Barama, A., Benaliouche, F. (2017). Hydrogen production over partial oxidation of methane using Ni-Mg-Al spinel catalysts: a kinetic approach. C.R. Chim., 20, 738−746. doi: 10.1016/j.crci.2017.02.002
  5. Zhang, G., Liu, J., Xu, Y., Sun, Y. (2018). A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017). Int. J. Hydrogen Energ., 43, 15030−15054. doi: 10.1016/j.ijhydene.2018.06.091
  6. Kusakabe, K., Sotowa, K.-I., Eda, T., Iwamoto, Y. (2004). Methane steam reforming over Ce–ZrO2 supported noble metal catalysts at low temperature. Fuel. Proc. Tech., 86, 319−326. doi: 10.1016/j.fuproc.2004.05.003
  7. Profeti, L.P.R., Ticianelli, E.A., Assaf, E.M. (2008). Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming. Fuel, 87, 2076−2081. doi: 10.1016/j.fuel.2007.10.015
  8. Swaan, H.M., Kroll, V.C.H., Martin, G.A., Mirodatos, C. (1994). Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide. Catal. Today, 21, 571−578. doi: 10.1016/0920-5861(94)80181-9
  9. Özdemir, H., Öksüzömer, M.A.F., Gürkaynak, M.A. (2010). Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition. Int. J. Hydrogen Energ., 35, 12147−12160. doi: 10.1016/j.ijhydene.2010.08.091
  10. Al-Fatesh, A.S., Kumar, R., Kasim, S.O., Ibrahim, A.A., Fakeeha, A.H., Abasaeed, A.E., Alrasheed, R., Bagabas, A., Chaudhary, M.L., Frusteri, F., Chowdhury, B. (2020). The effect of modifier identity on the performance of Ni-based catalyst supported on γ-Al2O3 in dry reforming of methane. Catal. Today, 348, 236−242. doi: 10.1016/j.cattod.2019.09.003
  11. Wang, F., Wang, Y., Zhang, L., Zhu, J., Han, B., Fan, W., Xu, L., Yu, H., Cai, W., Li, Z., Deng, Z., Shi, W. (2020). Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts. Catal. Today, 355, 502–511. doi: 10.1016/j.cattod.2019.06.067
  12. Benrabaa, R., Barama, A., Boukhlouf, H., Guerrero-Caballero, J., Rubbens, A., Bordes-Richard, E., Löfberg, A., Vannier, R.N. (2017). Physico-chemical properties and syngas production via dry reforming of methane over NiAl2O4 catalyst. Int. J. Hydrogen Energ., 42, 12989−12996. doi: 10.1016/j.ijhydene.2017.04.030
  13. Dama, S., Ghodke, S.R., Bobade, R., Gurav, H.R., Chilukuri, S. (2018). Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Appl. Catal. B: Environ., 224, 146−158. doi: 10.1016/j.apcatb.2017.10.048
  14. Song, X., Dong, X., Yin, S., Wang, M., Li, M., Wang, H. (2016). Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Appl. Catal. A: Gen., 526, 132−138. doi: 10.1016/j.apcata.2016.07.024
  15. Guo, J., Lou, H., Zhao, H., Chai, D., Zheng, X. (2004). Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A: Gen., 273, 75−82. doi: 10.1016/j.apcata.2004.06.014
  16. Li, Z., Li, M., Bian, Z., Kathiraser, Y., Kawi, S. (2016). Design of highly stable and selective core/yolk–shell nanocatalysts-A review. Appl. Catal. B: Environ., 188, 324−341. doi: 10.1016/j.apcatb.2016.01.067
  17. Peng, H., Zhang, X., Zhang, L., Rao, C., Lian, J., Liu, W., Ying, J., Zhang, G., Wang, Z., Zhang, N., Wang, X. (2017). One‐Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multiple‐Cores@Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. Chem. Cat. Chem., 9, 127−136. doi: 10.1002/cctc.201601263
  18. Dai, C., Zhang, S., Zhang, A., Song, C., Shi, C., Guo, X. (2015). Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A, 3, 16461−16468. doi: 10.1039/C5TA03565A
  19. Zhu, Y., Jin, N., Liu, R., Sun, X., Bai, L., Tian, H., Ma, X., Wang, X. (2020). Bimetallic BaFe2MAl9O19 (M = Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane. Appl. Energy, 258, 114070−114074. doi: 10.1016/j.apenergy.2019.114070
  20. Horlyck, J., Lawrey, C., Lovell, E.C., Amal, R., Scott, J. (2018). Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane. Chem. Eng. J., 352, 572−580. doi: 10.1016/j.cej.2018.07.009
  21. Song, K., Lu, M., Xu, S., Chen, C., Zhan, Y., Li, D., Au, C., Jiang, L., Tomishige, K. (2018). Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane. Appl. Catal. B: Environ., 239, 324−333. doi: 10.1016/j.apcatb.2018.08.023
  22. Fan, M.S., Abdullah, A.Z., Bhatia, S. (2010). Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: Preparation, characterization and activity studies. Appl. Catal. B: Environ., 100, 365−377. doi: 10.1016/j.apcatb.2010.08.013
  23. Nataj, S.M.M., Alavi, S.M., Mazloom, G. (2018). Modeling and optimization of methane dry reforming over Ni-Cu/Al2O3 catalyst using Box-Behnken design. J. Energy. Chem., 27, 1475−1488. doi: 10.1016/j.jechem.2017.10.002
  24. Shiri, A., Soleymanpour, F., Eshghi, H., Khosravi, I. (2015). Nano-sized NiLa2O4 spinel–NaBH4-mediated reduction of imines to secondary amines. Chin. J. Catal., 36, 1191−1196. doi: 10.1016/S1872-2067(15)60921-4
  25. Valderrama, G., Kiennemann, A., Goldwasser, M.R. (2008). Dry reforming of CH4 over solid solutions of LaNi1-xCoxO3. Catal. Today, 133−135, 142−148. doi: 10.1016/j.cattod.2007.12.069
  26. Leofanti, G., Padovan, M., Tozzola, G., Venturelli, B. (1998). Surface area and pore texture of catalysts. Catal. Today, 41, 207−219. doi: 10.1016/S0920-5861(98)00050-9
  27. Valderrama, G., Kiennemann, A., Goldwasser, M.R. (2010). La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J. Power. Sources, 195, 1765−1771. doi: 10.1016/j.jpowsour.2009.10.004
  28. Moradi, G.R., Khosravian, F., Rahmanzadeh, M. (2012). Effects of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming. Chinese. J. Catal., 33, 797−801.doi: 10.1016/S1872-2067(11)60378-1
  29. Banerjee, A., Das, S., Mirsa, S., Mukhopadhyay, S. (2009). Structural analysis on spinel (MgAl2O4) for application in spinel-bonded castables. Ceramics Int., 35, 381−390. doi: 10.1016/j.ceramint.2007.11.009
  30. Guo, J., Lou, H., Zhao, H., Wang, X. (2004). Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Mat. Let., 58, 1920−1923. doi: 10.1016/j.matlet.2003.12.013
  31. Phan, T.S., Sane, A.R., de Vasconcelos, B.R., Nzihou, A., Sharrock, P., Grouset, D., Pham Minh, D. (2018). Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl. Catal. B: Environ., 224, 310−321. doi: 10.1016/j.apcatb.2017.10.063
  32. Verykios, X.E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int. J. Hydrogen. Energ., 28, 1045−1063. doi: 10.1016/S0360-3199(02)00215-X
  33. Zhang, J., Wang, H., Dalai, A.K. (2007). Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J. Catal., 249, 300−310. doi: 10.1016/j.jcat.2007.05.004
  34. Takanabe, K., Nagaoka, K., Nariai, K., Aika, K. (2005). Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J. Catal., 232, 268−275. doi: 10.1016/j.jcat.2005.03.011
  35. González, O., Lujano, J., Pietri, E., Goldwasser, M.R. (2005). New Co-Ni catalyst systems used for methane dry reforming based on supported catalysts over an INT-MM1 mesoporous material and a perovskite-like oxide precursor LaCo0.4Ni0.6O3. Catal. Today, 107−108, 436−443. doi: 10.1016/j.cattod.2005.07.112
  36. Song, X., Dong, X., Yin, S., Wang, M., Li, M., Wang, H. (2016). Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane. Appl. Catal. A: Gen., 526, 132−138. doi: 10.1016/j.apcata.2016.07.024
  37. Djaidja, A., Libs, S., Kiennemann, A., Barama, A. (2006). Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal. Today, 113, 194−200. doi: 10.1016/j.cattod.2005.11.066
  38. Djaidja, A., Messaoudi, H., Kaddeche, D., Barama, A. (2015). Study of Ni-M/MgO and Ni-M-Mg/Al (M= Fe or Cu) catalysts in the CH4-CO2 and CH4-H2O reforming. Int. J. Hydrogen. Energ., 40, 4989−4995. doi: 10.1016/j.ijhydene.2014.12.106

Last update:

No citation recorded.

Last update:

No citation recorded.