Preparation Titanium Dioxide Combined Hydrophobic Polymer with Photocatalytic Self-Cleaning Properties

*Sayekti Wahyuningsih orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Rochmad E. Cahyono  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Fitri N. Aini  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Received: 20 Oct 2020; Revised: 9 Dec 2020; Accepted: 10 Dec 2020; Published: 28 Dec 2020; Available online: 22 Dec 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Titanium dioxide (TiO2) and hydrophobic of TiO2/PDMS (PDMS = polydimethylsiloxane) have been prepared as photocatalytic self-cleaning materials. Synthesis of TiO2 was carried out using the sol-gel method with titanium(IV) isopropoxide (TTIP) as a precursor and acetic acid as a solvent at a temperature of about 10–15 °C, while the synthesis of hydrophobic of TiO2/PDMS composites was carried out by a sonication method under ethanol solution. The results of XRD analysis of synthesized TiO2 showed that TiO2 was anatase phase. The glass-coated TiO2/PDMS were prepared by dip-coating under an ultrasonication bath. TiO2/PDMS composites at a ratio of TiO2/PDMS (1) on the glass plate showed hydrophobic properties, as evidenced by the contact angle of 104° before irradiation and the contact angle of 99.7° after irradiation. The synthesized titanium dioxide has irregular spherical morphology. The increase in PDMS content was correlated with an increase in the roughness of TiO2. PDMS not only acts as low surface energy but also binds TiO2. The hydrophobic behavior of PDMS creates TiO2/PDMS repel each other, gain irregular agglomeration structures. Beside having optimum contact angle, glass-coated TiO2/PDMS (1) is the best composition for degradation of methylene blue in 69.68% for 20 minutes irradiation. Copyright © 2020 BCREC Group. All rights reserved


Keywords: Self-cleaning; Photocatalytic; Sol-gel; TiO2/PDMS, methylene blue
Funding: Universitas Sebelas Maret under contract (PM-UNS) (Penelitian Mandatory 2019)

Article Metrics:

  1. Wang, R. (1997). Light-induced amphiphilic surface [4]. Nature, 388, 431−432. DOI: 10.1038/41233
  2. Ganesh, V.A., Raut, H.K., Nair, A.S., Ramakrishna, S. (2011). A review on self-cleaning coatings. J. Mater. Chem., 21, 16304−16322. DOI: 10.1039/c1jm12523k
  3. Wang, Y., Huang, Z., Gurney, R.S., Liu, D. (2019). Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloids Surfaces A Physicochem. Eng. Asp., 561, 101−108. DOI: 10.1016/j.colsurfa.2018.10.054
  4. Kamegawa, T., Shimizu Y., Yamashita, H. (2012). Superhydrophobic surfaces with photovatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv. Mater., 24, 3697−3700. DOI: 10.1002/adma.201201037
  5. Zhao, Y., Lui, Y., Xu, Q., Barahman, M., Lyons, A.M. (2015). Catalytic, self-cleaning surface with stable superhydrophobic properties: Printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles. ACS Appl. Mater. Interface., 7, 2632−2640. DOI: 10.1021/am5076315
  6. Ji, M. (2005). Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromol. Rapid. Commun., 26, 1805−1809. DOI: 10.1002/marc.200500458
  7. Colón, G., Hidalgo, M.C., Navío, J.A., Melián, E.P., Díaz, O.G., Doña, J.M. (2008). Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Appl. Catal. B Environ., 78, 176−182. DOI: 10.1016/j.apcatb.2007.09.019
  8. Yang, S.J., Chen, X., Yu, B., Cong, H.L., Peng, Q.H., Jiao, M. (2016). Self-cleaning superhydrophobic coatings based on PDMS and TiO2/SiO2 nanoparticles. Integr. Ferroelectr., 169, 29−34. DOI: 10.1080/10584587.2016.1162604
  9. Kapridaki, C., Maravelaki-Kalaitzaki, P. (2013). TiO2-SiO2-PDMS nanocomposite hydrophobic coating with self-cleaning properties for marble protection. Prog. Org. Coatings., 76, 400−410. DOI: 10.1016/j.porgcoat.2012.10.006
  10. Ding, X., Zhou, S., Gu, G., Wu, L. (2011). A facile and large-area fabrication method of superhydrophobic self-cleaning fluorinated polysiloxane/TiO2 nanocomposite coatings with long-term durability. J. Mater. Chem., 21, 6161−6164. DOI: 10.1039/c0jm04546b
  11. Sangchay, W. (2016). The Self-cleaning and Photocatalytic Properties of TiO2 Doped with SnO2 Thin Films Preparation by Sol-gel Method. Energy Procedia, 89, 170−176. DOI: 10.1016/j.egypro.2016.05.023
  12. Ramakrishnan, V.M., Natarajan, M., Santhanam, A., Asokan, V., Velauthapillai, D. (2017). Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and phototvoltaic applications. Mater. Res. Bull., 97, 351−360. DOI: 10.1016/j.materresbull.2017.09.017
  13. Tanaka, Y., Sakai, H., Tsuke, T., Uesugi, Y., Sakai, Y., Nakamura, K. (2011). Influence of coil current modulation on TiO2 nanoparticle synthesis using pulse-modulated induction thermal plasmas. Thin Solid Films. 519, 7100−7105. DOI: 10.1016/j.tsf.2010.11.063
  14. Ding, X., Pan, S., Lu, C., Guan, H., Yu, X., Tong, Y. (2018). Hydrophobic photocatalytic composite coatings based on nano-TiO2 hydrosol and aminopropyl terminated polydimethylsiloxane prepared by a facile approach. Mater. Lett., 228, 5−8. DOI: 10.1016/j.matlet.2018.05.103
  15. Tavares, M.T.S. (2014). TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf. Coatings Technol., 239, 16−19. DOI: 10.1016/j.surfcoat.2013.11.009
  16. Neves, J.C., Mohallem, N.D.S., Viana, M.M. (2020). Polydimethylsiloxanes-modified TiO2 coatings: The role of structural, morphological and optical characteristics in a self-cleaning surface. Ceram. Int., 46, 11607−11616. DOI: 10.1016/j.ceramint.2020.01.190
  17. Yang, M. (2019). Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane. J. Mater. Sci., 54, 2079−2092. DOI: 10.1007/s10853-018-3001-1
  18. Castellote, M., Bengtsson, N. (2011). Applications of Titanium Dioxide Photocatalysis to Construction Materials. In Y. Ohama and D.V. Gemert (Eds.), Appl. Titan. Dioxide Photocatal, to Constr. Mater., DOI: 10.1007/978-94-007-1297-3
  19. Mashid, S., Askari, M., Ghamsari, M.S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol., 189, 296−300
  20. Wahyuningsih, S. (2018). The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties. IOP Conf. Ser. Mater. Sci. Eng., 333, 012023. DOI: 10.1088/1757-899X/333/1/012023
  21. Whang, C.M., Yeo, C.S., Kim, Y.H. (2001). Preparation and characterization of sol-gel derived SiO2-TiO2-PDMS composites film. Bull. Korean Chem. Soc., 22, 1366−1370
  22. Kapridaki, C., Pinho, L., Mosquera., Maravelaki-Kalaitzaki, M.J. (2014). Producingg photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl. Catal. B Environ., 156−157, 416−427. DOI: 10.1016/j.apcatb.2014.03.042
  23. Dariani, R.S., Esmaeili, A., Mortezaali, A., Denghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik(Stuttg)., 127, 7143−7154. DOI: 10.1016/j.ijleo.2016.04.026
  24. Arifin, M.N., Rezaul Karim, K.M., Abdullah, H., Khan, M.R. (2019). Synthesis of titania doped copper ferrite photocatalyst and its photoactivity towards methylene blue degradation under visisble light irradiation. Bull. Chem. React. Eng. Catal., 14, 219−227. DOI: 10.9767/bcrec.14.1.3616.219-227
  25. Banerjee, S., Dionysiou, D.D., Pillai, S.C. (2015). Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ., 176−177, 396−428. DOI: 10.1016/j.apcatb.2015.03.058

Last update: 2021-04-19 22:29:28

No citation recorded.

Last update: 2021-04-19 22:29:30

No citation recorded.