Synthesis and Characterization of Bi13B0.48V0.49-xPxO21.45 and Efficient Catalyst for the Synthesis of 2,3-dihydroquinazolin-4(1H)-ones Derivatives Synthesis

*Hanane Barebita scopus  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Youssef Merroun  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Soumya Ferraa scopus  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Abderrazak Nimour scopus  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Abdelaziz Souizi  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Taoufiq Guedira scopus  -  Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Science, University of Ibn Tofail, Morocco
Received: 20 Oct 2020; Revised: 2 Dec 2020; Accepted: 3 Dec 2020; Published: 28 Dec 2020; Available online: 19 Dec 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

A new compound has been found in the system Bi13B0.48V0.49-x PxO21.45 (with 0≤x≤0.34), were prepared by the direct solid-state reaction of Bi2O3, (NH4)2HPO4, V2O5, and B2O3. This material melts congruently and it crystallize with the sillenite structure (space group I23) and form a solid solution with the cubic lattice parameter increasing from with a = 10.1568 Å to 10.1436 Å with increasing of P2O5 molar. Consequently, the new composites belong to g-variety of solid state. The samples have been characterized by Fourier transform infrared spectroscopy (FT-IR), diffraction XRD and scanning electron microscopy (SEM) coupled to the EDX. On the other hand, the valorization of the prepared composites was performed by using them as heterogeneous catalyst in the 2,3-dihydroquinazolin-4(1H)-ones derivatives synthesis. The catalyst is stable (as a bench top catalyst) and reusable. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Bi13B0.48V0.49-x PxO21.45; Heterogeneous catalyst; 2,3-dihydroquinazolin-4(1H)-ones; γ-Bi2O3; Solid state
Funding: University of Ibn Tofail

Article Metrics:

  1. Gaya, U.I. (2013). Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer Science & Business Media.
  2. Pan, C., Li, X., Wang, F., Wang, L. (2008). Synthesis of bismuth oxide nanoparticles by the polyacrylamide gel route. Ceram. Int., 34, 439−441.
  3. Xiaohong, W., Wei, Q., Weidong, H. (2007). Thin bismuth oxide films prepared through the sol–gel method as photocatalyst. J. Mol. Catal. A: Chem., 261, 167−171.
  4. Huang, Q., Wang, Q., Tao, T., Zhao, Y., Wang, P., Ding, Z., Chen, M. (2019). Controlled Synthesis of Bi2O3/TiO2 Catalysts with Mixed Alcohols for the Photocatalytic Oxidation of HCHO. Environ. Technol., 40, 1937–1947.
  5. Al Wazny, M.S., Salim, E.T., Bader, B.A., Fakhry, M.A. (2018). Synthesis of Bi2O3 Films, Studying Their Optical, Structural, and Surface Roughness Properties. IOP Conf. Ser. Mater. Sci. Eng., 454, 012160.
  6. Zhu, G., Yang, W., Lv, W., He, J., Wen, K., Huo, W., Hu, J., Waqas, M., Dickerson, J.H., He, W. (2017). Facile Electrophoretic Deposition of Functionalized Bi2O3 Nanoparticles. Mater. Des., 116, 359–364.
  7. Bandoli, G., Barreca, D., Brescacin, E., Rizzi, G.A., Tondello, E. (1996). Pure and Mixed Phase Bi2O3 Thin Films Obtained by Metal Organic Chemical Vapor Deposition. Chem. Vap. Depos., 2, 238–242.
  8. Polat, Y., Arı, M., Dağdemir, Y. (2017). Thermal, Electrical and Structural Properties of (Bi2O3)1−x−y(Sm2O3)x(CeO2)y Electrolytes for Solid Oxide Fuel Cells. Phase Transit., 90, 387–398.
  9. Shi, Y., Luo, L., Zhang, Y., Chen, Y., Wang, S., Li, L., Long, Y., Jiang, F. (2017). Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceram. Int., 43, 7627−7635.
  10. Chen, R., Shen, Z.R., Wang, H., Zhou, H.J., Liu, Y.P., Ding, D.T., Chen, T.H. (2011). Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity. J. Alloys Compd., 509, 2588–2596.
  11. Wang, F., Jiang, J., Wang, B. (2019). Recent In Situ/Operando Spectroscopy Studies of Heterogeneous Catalysis with Reducible Metal Oxides as Supports. Cat., 9, 477.
  12. Arfaoui, J., Ghorbel, A., Petitto, C., Delahay, G. (2017). Novel Vanadium Supported onto Mixed Molybdenum-Titanium Pillared Clay Catalysts for the Low Temperature SCR-NO by NH3. Chem. Eng. J., 356, 598−608.
  13. Bokuniaeva, A.O., Vorokh, A.S. (2019). Estimation of Particle Size Using the Debye Equation and the Scherrer Formula for Polyphasic TiO2 Powder. J. Phys. Conf. Ser., 1410, 012057.
  14. Pandya, S.G., Corbett, J.P., Jadwisienczak, W.M., Kordesch, M.E. (2016). Structural Characterization and X-Ray Analysis by Williamson–Hall Method for Erbium Doped Aluminum Nitride Nanoparticles, Synthesized Using Inert Gas Condensation Technique, Physica E Low Dimens. Syst. Nanostruct., 79, 98–102.
  15. Bourja, L., Bakiz, B., Benlhachemi, A., Ezahri, M., Villain, S., Gavarri, J.R. (2010). Synthesis and characterization of nanosized Ce1-xbixo2-δ solid solutions for catalytic applications. Journal of Taibah University for Science, 4, 1–8.
  16. Ai, Z., Huang, Y., Lee, S., Zhang, L. (2011). Monoclinic α-Bi2O3 Photocatalyst for Efficient Removal of Gaseous NO and HCHO under Visible Light Irradiation. J. of Alloys and Compd., 509, 2044–2049.
  17. Rajyasree, C., Rao, D.K. (2011). Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. J. Non-Cryst. Solids, 357, 836–841.
  18. Hayakawa, S., Yoko, T., Sakka, S. (1995). IR and NMR structural studies on lead vanadate glasses. J. Non-Cryst. Solids, 183, 73–84.
  19. Doweidar, H., Saddeek, Y.B. (2009). FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solid, 355, 348–354.
  20. Jermoumi, T., Hafid, M., Toreis, N. (2002). Thermaland FTIR analysis of (50−x)BaO-x Fe2O3-50P2O5 glasses. Phys. Chem. Glasses, 43, 129−132.
  21. Subbalakshimi, P., Sastry, P.S., Veeraiah, N. (2001). Dielectric relaxation and ac conduction phenomena in PbO-WO3-P2O5 glass system. Phys. Chem. Glasses, 42: 307-314.
  22. Khawaja, E.E., Durrani, S.M.A., Al-Adel, F.F., Salim, M.A., Hussain, M.S. (1995). X-ray photoelectron spectroscopy and Fourier transform-infrared studies of transition metal phosphate. J. Mater. Sci., 30, 225–234.
  23. Shih, P.Y., Chin, T.S. (1999). Effect of redox state of copper on the properties of P2O5-Na2O-CuO glasses. Mater. Chem. Phys., 60, 50–57.
  24. Dayanand, C., Bhikshamaiah, G., Tyagaraju, V.J., Salagram, M., Krishna Murthy, A.S.R. (1996). Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x)P2O5 vitreous system. J. Mater. Sci., 31, 1945–1967.
  25. Sreenivasu, D., Chandramouli, V. (200). Spectroscopic and transport properties of Cu2+ ion doped in (40-x)Li2O-xLiF-60Bi2O3 glasses. Bull. Mater. Sci., 23, 509–513.
  26. Dimitrov, V., Dimitriev, Y. (1990). Structure of glasses in PbO-V2O5 system. J. Non-Cryst. Solids, 122, 133−138.
  27. Dachille, F., Roy, R. (1959). A New High‐pressure Form of B2O3 and Inferences on Cation Coordination from Infrared Spectroscopy. J. American Ceramic Society., 42, 78−80.
  28. Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S., Klissurski, D. (1996). Glass formation and structure in the V2O5Bi2O3Fe2O3 glasses. J. Non-Cryst. Solids, 204, 141–150.
  29. Montagne, L., Palavit, G., Mairesse, G. (1996). 31P MAS NMR and FT IR analysis of (50-x/2) Na2O. xBi2O3.(50-x/2) P2O5 glasses. Phys. Chem. Glasses, 37, 206−211.
  30. Moustafa, Y.M., El-Egili, K., Doweidar, H., Abbas, I. (2004). Phase equilibria in iron phosphate system. Physica B, 353, 82−91.
  31. Baia, L., Stefan, R., Kiefer, W., Simon, S. (2005). Structural characteristics of B2O3–Bi2O3 glasses with high transition metal oxide content. J. Raman Spectrosc., 36, 262−266.
  32. Kamitsos, E.I., Chryssikos, G.D., Karakassides, M.A. (1987). Vibrational-spectra of magnesium-sodium-borate glasses. 1. Far-infrared investigation of the cation-site interactions. J. Phys. Chem., 91, 1067−1073.
  33. Wang, M., Zhang, T.T., Song, Z.G. (2011). Eco-friendly Synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in water. Chinese Chem. Lett., 22, 427−430.
  34. Safaei‐Ghomi, J., Teymuri, R. (2019). A Three‐component Process for the Synthesis of 2,3‐dihydroquinazolin‐4(1H)‐one Derivatives Using Nanosized Nickel Aluminate Spinel Crystals as Highly Efficient Catalysts. J. Chin. Chem. Soc., 66, 1490−1498.
  35. Rostami, A., Tavakoli, A. (2011). Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol. Chinese Chem. Lett., 22, 1317−1320.
  36. Benzekri, Z., Serrar, H., Boukhris, S., Souizi, A. (2017). FeCl3/Egg Shell: An effective catalytic system for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones at room temperature. J. Turk Chem. Soc. Sect. A: Chem., 4, 775−786.
  37. Merroun, Y., Chehab, S., Ghailane, T., Boukhris, S., Ghailane, R., Habbadi, N., Hassikou, A., Lakhrissi, B., Souizi, A. (2018). An effective method to synthesize 2,3-dihydroquinazolin-4 (1H)-One using phosphate fertilizers (MAP, DAP and TSP) as green heterogeneous catalysts. J. Turk. Chem. Soc. Sect A: Chem., 5, 303−316.
  38. Karhale, S., Survase, D., Bhat, R., Ubale, P., Helavi, V. (2017). A Practical and Green Protocol for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Using Oxalic Acid as Organocatalyst. Res. Chem. Intermed., 43, 3915−3924.
  39. Yassaghi, G., Davoodnia, A., Allameh, S., Zare-Bidaki, A., Tavakoli-Hoseini, N. (2012). Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones. B. Korean Chem. Soc., 33, 2724–2730.
  40. Yerram, P., Chowrasia, R., Seeka, S., Tangenda, S.J. (2013). Polyethylene Glycol (PEG-400) as a Medium for Novel and Efficient Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-One Derivatives. Eur. J. Chem., 4, 462–466.
  41. Sathe, B.P., Phatak, P.S., Kadam, A.Y., Gulmire, A.V., Narvade, P.R., Haval, K.P. (2018). An Efficient Synthesis of Substituted-2, 3-Dihydroquinazolin-4(1H)-Ones Using Fe3O4@SiO2SO3H Nano-Catalyst. Int. Res. J. Sci. Eng., A5, 99−104.
  42. Zaghaghi, Z., Mirjalili, B.B.F., Monfared, A. (2019). Synthesis of 2,3-Dihydroquinazolin -4(1H)-Ones Promoted by Polystyrene Sulfonic Acid. Org. Chem. Res., 5, 80−86.
  43. Katla, R., Chowrasia, R., da Silva, C., de Oliveira, A., dos Santos, B., Domingues, N. (2017). Recyclable [Ce(L-Pro)2]2 (Oxa) Used as Heterogeneous Catalyst: One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in Ethanol. Synthesis, 49, 5143−5148.

Last update: 2021-01-18 20:23:41

No citation recorded.

Last update: 2021-01-18 20:23:41

No citation recorded.