skip to main content

Ultrasound Assisted Synthesis of Polylimonene and Organomodified-clay Nanocomposites: A Structural, Morphological and Thermal Properties

1Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Benbella, BP 1524, El-Mnaouer, 31000 Oran, Algeria

2Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Algeria

3Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, Marinha Grande, Portugal

4 Department of Chemistry, FSEI, University of Abdelhamid Ibn Badis Mostaganem, Algeria

View all affiliations
Received: 15 Oct 2020; Revised: 22 Oct 2020; Accepted: 23 Oct 2020; Available online: 9 Nov 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Polylimonene-clay nanocomposites (PLM-Mag 2, 3, 6 and 10% by weight of clay) were prepared by mixing Maghnite-CTA+ (Mag-CTA+) and polylimonene (PLM) in solution using ultrasonic irradiation. The catalyst preparation method were studied in order to determine and evaluate their structural, morphological and thermal properties. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process, using green natural clay of Maghnia (west of Algeria) called Maghnite. The Algerian clay was modified by ultrasonic-assisted method using cetyltrimethylammonuim bromide (CTAB) in which they used as green nano-reinforcing filler. Polylimonene was obtained by the polymerization of limonene, using Mag-H+ as a catalyst. The morphology of the obtained nanocomposites was studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and infrared spectroscopy (FT-IR). Thermogravimetric analysis (TGA) shows that the nanocomposites have a high degradation temperature (200−250 °C) compared with the pure polylimonene (140 °C). The analyses confirmed the chemical modification of montmorillonite layers and their uniformly dispersion in the polylimonene matrix. Exfoliated structures were obtained for low amounts of clay (2 and 3% by weight), while intercalated structures and immiscible regions were detected for high amounts of clay (6 and 10% by weight). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

 

Fulltext View|Download
Keywords: Ultrasound; Polylimonene; Green-nanocomposites; Organo-modified clay; Polymer/clay
Funding: (DGRSDT) Direction Générale de la Recherche Scientifique et du Développement Technologique-Algeria ; CDRSP-IP Leiria (Centre For Rapid and Sustainable Product Development)

Article Metrics:

  1. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Ukushima, Y.F., Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. J. Mater. Res., 8, 1185−1189
  2. Harrane, A., Meghabar, R., Belbachir, M. (2006). In situ polymerization of ε-caprolactone catalyzed by Maghnite TOA to produce poly(ε-caprolactone)/ montmorillonite nanocomposites. Des. Mono. And Polym., 9, 181−191
  3. Zare, Y., Fasihi, M., Rhee, K.Y. (2017). Efficiency of stress transfer between polymer matrix and nanoplatelets in clay/polymer nanocomposites. Appl. Clay. Sci., 143, 265−272
  4. Kotal, M., Bhowmick, A.K. (2015). Polymer nanocomposites from modified clays: Recent advances and challenges. Pro. Polym. Sci., 51, 127−187
  5. Mykola, S., Olga, N., Dmitry, M. (2016). The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of epoxy-clay nanocomposites. Int. Biodeterior. Biodegrad., 110, 136−140
  6. Sun, J. (2007). D-Limonene: Safety and Clinical Applications. Alter. Med. Rev., 12, 259−264
  7. Rukel, E., Wojcik, R., Arlt, H. (1976). Cationic Polymerization of α-Pinene Oxide and β-Pinene Oxide by a Unique Oxonium lonCarbenium Ion Sequence. J. Macromol. Sci. Part A., 10, 1371−1390
  8. Sharma, S., Srivastava, A.K. (2004). Synthesis and characterization of copolymers of limonene with styrene initiated by azobisisobutyronitrile. Eur. Polym. J., 40, 2235−2240
  9. Roberts, W., Day, A. (1950). A Study of the Polymerization of α- and β-Pinene with Friedel- Crafts Type Catalysts. J. Amer. Chem. Soci., 72, 1226−1230
  10. Modena, M., Bates, R.B., Marvel, S.C. (1965). Some low molecular weight polymers of d‐limonene and related terpenes obtained by Ziegler‐type catalysts. J. Polym. Sci. Part A Gen Pap., 3, 949−960
  11. Barros, M.T., Petrova, K.T., Ramos, A.M. (2007). Potentially Biodegradable Polymers based on α- or β-Pinene and Sugar Derivatives or Styrene, Obtained under Normal Conditions and Microwave Irradiation. Eur. J. Org. Chem., 8, 1357−1363
  12. Mathers, R.T., Damodaran, K. (2007). Renewable Chain Transfer Agents for Metallocene Polymerizations: The Effects of Chiral Monoterpenes on the Polyolefin Molecular Weight and Isotacticity. J. Polym. Sci. Part A Polym. Chem., 45, 3150−3165
  13. Bhanvase, B.A., Pinjari, D.V., Gogate, P.R., Sonawane, S.H., Pandit, A.B. (2011). Process intensification of encapsulation of functionalized CaCO3 nanoparticles using ultrasound assisted emulsion polymerization. Chem. Eng. Proce., 50, 1160−1168
  14. Bhanvase, B.A., Pinjari, D.V., Gogate, P.R., Sonawane, S.H., Pandit, A.B. (2012). Synthesis of exfoliated poly(styrene-co-methyl methacrylate)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization. Chem. Eng. J., 181, 770−778
  15. Bhanvase, B.A., Pinjari, D.V., Gogate, P.R., Sonawane, S.H., Pandit, A.B. (2012) Analysis of semibatch emulsion polymerization: Role of ultrasound and initiator. Ultrason. Sonochem., 19, 97−103
  16. Bhanvase, B.A., Sonawane, S.H., Pinjari, D.V., Gogate, P.R., Pandit, A.B. (2014). Kinetic studies of semibatch emulsion copolymerization of methyl methacrylate and styrene in the presence of high intensity ultrasound and initiator. Chem. Eng. Proce. Process Intensification, 85, 168−177
  17. Bhanvase, B.A., Sonawane, S.H. (2014). Ultrasound Assisted In-Situ Emulsion Polymerization for Polymer Nanocomposite: A Review. Chem. Eng. Proce. Process Intensification, 85, 86−107
  18. Yusof, N.S.M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J., Ashokkumar, M. (2016). Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications. Ultrason. Sonochem., 29, 568–576
  19. Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Meghabar, R. (2018). Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem., 48, 188–198
  20. Derdar, H., Mitchell, G.R., Mahendra, V.S., Benachour, M., Haoue, S., Cherifi, Z., Bachari, K., Harrane, A., Meghabar, R. (2020). Green Nanocomposites from Rosin-Limonene Copolymer and Algerian Clay. Polymers, 12, 1971
  21. Derdar, H., Belbachir, M., Hennaoui, F., Akeb, M., Harrane, A. (2018). Green copolymerization of limonene with β-pinene catalyzed by an eco-catalyst Maghnite-H+. Polym. Sci. Ser. B., 60, 555−562
  22. Embarek, N., Sahli, N. (2020). A Novel Green Synthesis Method of Poly (3-Glycidoxypropyltrimethoxysilane) Catalyzed by Treated Bentonite. Bull. Chem. React. Eng. Catal., 15, 290−303
  23. Haoue, S., Derdar, H., Belbachir, M., Harrane, A. (2020). Polymerization of ethylene glycol dimethacrylate (EGDM), using an Algerian clay as eco-catalyst (maghnite-H+ and Maghnite-Na+). Bull. Chem. React. Eng. Catal., 15, 221–230
  24. Derdar, H., Belbachir, M., Harrane, A. (2019). A green synthesis of polylimonene using Maghnite-H+, an exchanged montmorillonite clay, as eco-catalyst. Bull. Chem. React. Eng. Catal., 14, 69−79
  25. Khenifi, A., Zohra, B., Kahina, B., Houari, H., Zoubir, D. (2009). Removal of 2,4- DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study. Chem. Eng. J., 146, 345–354
  26. Cicel, B. (1992). Mineralogical composition and distribution of Si, Al, Fe, Mg and Ca in the fine fractions of some Czech and Slovak bentonites. Geologica. Carpath. Ser. Clays., 43, 3−7
  27. Grenier, A., Wendorff, J.H. (2007). Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angewandte Chemie International Edition, 46, 5670−5703
  28. Hrachova, J., Madejova, J., Billik, P., Komadel, P., Fajnor, S.V. (2007). Dry grinding of Ca and octadecyltrimethylammonium montmorillonite. J. Coll. Interf. Sci., 316, 589−595
  29. Salmi-Mani, H., Ait-Touchente, Z., Lamouri, A., Carbonnier, B., Caron, J.F., Benzarti, K., Chehimi, M.M. (2016). Diazonium salt-based photoiniferter as a new efficient pathway to clay–polymer nanocomposites. RSC Adv., 6, 88126
  30. Embarek, N., Sahli, N., Belbachir, M. (2019). Preparation and characterization of poly(3-glycidoxypropyltrimethoxysilane) nanocomposite using organophilic montmorillonite clay (Mag-cetyltrimethylammonium). J. Compos. Mater. 53: 4313-4322
  31. Bureau, M.N., Denault, J., Cole, K.C., Enright, G.D. (2002).The role of crystallinity and reinforcement in the mechanical behavior of polyamide-6/ clay nanocomposites. Polym. Eng. sci., 42, 1897−1906
  32. Kherroub, D.E., Belbachir, M., Lamouri, S. (2014). Nylon 6/clay nanocomposites prepared with Algerian modified clay (12-maghnite). Res. Chem. Int., 41, 5217−5228
  33. Vaia, R.A., Price, G., Ruth, P.N., Nguyen, H.T., Lichtenhan, J. (1999). Polymer/layered silicate nanocomposite as high performance ablative materials. Appl. Clay Sci., 15, 67−92

Last update:

No citation recorded.

Last update:

No citation recorded.