skip to main content

Glycerol Acetylation with Propionic Acid Using Iron and Cobalt Oxides in Al-MCM-41 Catalysts

1Department of Chemical Engineering, Federal University of Technology – Paraná, Apucarana 86812460, Paraná, Brazil

2FACENS University Center, Sorocaba 18085784, São Paulo, Brazil

3State University of Maringá, Brazil

Received: 24 Sep 2020; Revised: 26 Oct 2020; Accepted: 5 Nov 2020; Available online: 9 Nov 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

In this work, Al-MCM-41 molecular sieves were synthesized, containing iron and/or cobalt oxides, impregnated by incipient wetness method, characterized and applied as catalysts in the acetylation reaction of glycerol with propionic acid to produce green glyceryl propionate molecules of high commercial value. According to this, X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Fourier Transform Infra Red (FT-IR), adsorption/desorption N2 isotherms, textural analysis, and Scanning Electron Microscope (SEM) analysis were recorded to evaluate the main characteristics of materials. The presence of Lewis and Brønsted acidic sites and catalysts surface area were observed as important key points to functionalize acetylation reaction. Thus, time reaction, temperature, and glycerol / propionic acid ratio varied to improve the most suitable reaction conditions and behaviors. As a result, glycerol conversion was above 96%, followed by 68% of selectivity to glyceryl monopropionate as well as the formation of glyceryl di- and tri- propionate and a small amount of ethylene glycol dipropionate as an undesired product. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (

Fulltext View|Download
Keywords: Glycerol; propionic acid; acetylation; Al-MCM-41; iron; cobalt.
Funding: UTFPR – Campus Apucarana; PPGEQ-AP; DEQ-UEM; FACENS

Article Metrics:

  1. Faria, R.P.V., Pereira, C.S.M., Silva, V.M.T.M., Loureiro, J.M., Rodrigues, A.E. (2013). Glycerol valorisation as biofuels: Selection of a suitable solvent for an innovative process for the synthesis of GEA. Chemical Engineering Journal, 233, 159–167. DOI: 10.1016/j.cej.2013.08.035
  2. Nakagawa, Y., Tomishige, K. (2011). Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, 1, 179–190. DOI: 10.1039/c0cy00054j
  3. Sudarsanam, P., Mallesham, B., Prasad, A. N., Reddy, P.S., Reddy, B.M. (2013). Synthesis of bio – additive fuels from acetalization of glycerol with benzaldehyde over molybdenum promoted green solid acid catalysts. Fuel Processing Technology, 106, 539–545. DOI: 10.1016/j.fuproc.2012.09.025
  4. Bagnato, G., Iulianelli, A., Sanna, A., Basile, A. (2017). Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes, 7(2), 1–17. DOI: 10.3390/membranes7020017
  5. Christy, S., Noschese, A., Lomelí-Rodriguez, M., Greeves, N., Lopez-Sanchez, J.A. (2018). Recent progress in the synthesis and applications of glycerol carbonate. Current Opinion in Green and Sustainable Chemistry, 14, 99–107. DOI: 10.1016/j.cogsc.2018.09.003
  6. Katryniok, B., Dumeignil, F. (2013). Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, 3, 1819–1834. DOI: 10.1021/cs400354p
  7. Cornejo, A., Barrio, I., Campoy, M., Lázaro, J., Navarrete, B. (2017). Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renewable and Sustainable Energy Reviews, 79, 1400–1413. DOI: 10.1016/j.rser.2017.04.005
  8. Silva, C.X.A., Gonçalves, V.L.C., Mota, C.J.A. (2009). Water-tolerant zeolite catalyst for the acetalisation of glycerol. Green Chemistry, 11(1), 38–41. DOI: 10.1039/b813564a
  9. Rahmat, N., Abdullah, A.Z., Mohamed, A.R. (2010). Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review. Renewable and Sustainable Energy Reviews, 14, 987–1000. DOI: 10.1016/j.rser.2009.11.010
  10. Pham, T.T., Crossley, S.P., Sooknoi, T., Lobban, L.L., Resasco, D.E., Mallinson, R.G. (2010). Etherification of aldehydes, alcohols and their mixtures on Pd / SiO2 catalysts. Applied Catalysis A, General, 379(1–2), 135–140. DOI: 10.1016/j.apcata.2010.03.014
  11. Gu, Y., Azzouzi, A., Pouilloux, Y. (2008). Heterogeneously catalyzed etherification of glycerol: new pathways for transformation of glycerol to more valuable chemicals. Green Chemistry, 10, 164–167. DOI: 10.1039/b715802e
  12. Silva, C.R.B., Gonçalves, V.L.C., Lachter, E.R., Mota, C.J.A. (2009). Etherification of Glycerol with Benzyl Alcohol Catalyzed by Solid Acids. Journal of the Brazilian Chemical Society, 20(2), 201–204. DOI: 10.1590/S0103-50532009000200002
  13. Gupta, M., Kumar, N. (2012). Scope and opportunities of using glycerol as an energy source. Renewable and Sustainable Energy Reviews, 16(7), 4551–4556. DOI: 10.1016/j.rser.2012.04.001
  14. Sun, D., Yamada, Y., Sato, S., Ueda, W. (2016). Glycerol hydrogenolysis into useful C3 chemicals. Applied Catalysis B: Environmental, 193, 75–92. DOI: 10.1016/j.apcatb.2016.04.013
  15. Yamamoto, K., Kiyan, A.M., Bagio, J.C., Rossi, K.A.B., Delabio Berezuk, F., Berezuk, M.E. (2019). Green cyclic acetals production by glycerol etherification reaction with benzaldehyde using cationic acidic resin. Green Processing and Synthesis, 8(1), 183-190. DOI: 10.1515/gps-2018-0059
  16. Khayoon, M.S., Hameed, B.H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229–9235. DOI: 10.1016/j.biortech.2011.07.035
  17. Gonçalves, M., Rodrigues, R., Galhardo, T.S., Carvalho, W.A. (2016). Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel, 181, 46–54. DOI: 10.1016/j.fuel.2016.04.083
  18. Ekinci, E.K., Oktar, N. (2019). Production of value-added chemicals from esterification of waste glycerol over MCM-41 supported catalysts. Green Processing and Synthesis, 8(1), 128–134. DOI: 10.1515/gps-2018-0034
  19. De Canck, E., Dosuna-Rodríguez, I., Gaigneaux, E.M., Van Der Voort, P. (2013). Periodic mesoporous organosilica functionalized with sulfonic acid groups as acid catalyst for glycerol acetylation. Materials, 6(8), 3556–3570. DOI: 10.3390/ma6083556
  20. Sánchez, J.A., Hernández, D.L., Moreno, J.A., Mondragón, F., Fernández, J.J. (2011). Alternative carbon based acid catalyst for selective esterification of glycerol to acetylglycerols. Applied Catalysis A: General, 405(1–2), 55–60. DOI: 10.1016/j.apcata.2011.07.027
  21. Gonzalez-Arellano, C., De, S., Luque, R. (2014). Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catalysis Science and Technology, 4(12), 4242–4249. DOI: 10.1039/c4cy00714j
  22. Khayoon, M.S., Triwahyono, S., Hameed, B.H., Jalil, A.A. (2014). Improved production of fuel oxygenates via glycerol acetylation with acetic acid. Chemical Engineering Journal, 243, 473–484. DOI: 10.1016/j.cej.2014.01.027
  23. Gonçalves, C.E., Laier, L.O., Cardoso, A.L., José, M. (2012). Bioadditive synthesis from H3PW12O40-catalyzed glycerol esterification with HOAc under mild reaction conditions. Fuel Processing Technology, 102, 46–52. DOI: 10.1016/j.fuproc.2012.04.027
  24. Wang, L., Liu, Q., Zhou, M., Xiao, G. (2012). Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst. Journal of Natural Gas Chemistry, 21(1), 25–28. DOI: 10.1016/S1003-9953(11)60328-9
  25. Zhu, S., Zhu, Y., Gao, X., Mo, T., Zhu, Y., Li, Y. (2013). Production of bioadditives from glycerol esterification over zirconia supported heteropolyacids. Bioresource Technology, 130, 45–51. DOI: 10.1016/j.biortech.2012.12.011
  26. Dhakshinamoorthy, A., Alvaro, M., Garcia, H. (2012). Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 48(92), 11275–11288. DOI: 10.1039/c2cc34329k
  27. Zhou, C.H., Beltramini, J.N., Lu, G.Q. (2008). Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chemical Society Reviews, 37(3), 527–549. DOI: 10.1039/b707343g
  28. Trifoi, A.R., Agachi, P.Ş., Pap, T. (2016). Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols. Renewable and Sustainable Energy Reviews, 62, 804–814. DOI: 10.1016/j.rser.2016.05.013
  29. Cai, Q., Lin, W.Y., Xiao, F.S., Pang, W.Q., Chen, X.H., Zou, B.S. (1999). The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous and Mesoporous Materials, 32(1–2), 1–15. DOI: 10.1016/S1387-1811(99)00082-7
  30. Corma, A., Fornés, V., Navarro, M.T., Pérez-Pariente, J. (1994). Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of Catalysis, 148(2), 569–574. DOI: 10.1006/jcat.1994.1243
  31. Heravi, M.M., Hosseini, M., Oskooie, H.A., Baghernejad, B. (2011). Fe/Al-MCM-41: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives. Journal of the Korean Chemical Society, 55(2), 235–239. DOI: 10.5012/jkcs.2011.55.2.235
  32. Oprescu, E.E., Stepan, E., Dragomir, R.E., Radu, A., Rosca, P. (2013). Synthesis and testing of glycerol ketals as components for diesel fuel. Fuel Processing Technology, 110, 214–217. DOI: 10.1016/j.fuproc.2012.12.017
  33. Kim, I., Kim, J., Lee, D. (2014). A comparative study on catalytic properties of solid acid catalysts for glycerol acetylation at low temperatures. Applied Catalysis B: Environmental, 148–149, 295–303. DOI: 10.1016/j.apcatb.2013.11.008
  34. Mallesham, B., Govinda Rao, B., Reddy, B.M. (2016). Production of biofuel additives by esterification and acetalization of bioglycerol. Comptes Rendus Chimie, 19(10), 1194–1202. DOI: 10.1016/j.crci.2015.09.011
  35. Li, X., Zheng, L., Hou, Z. (2018). Acetalization of glycerol with acetone over Co[II](Co[III]xAl2−x)O4 derived from layered double hydroxide. Fuel, 233, 565–571. DOI: 10.1016/j.fuel.2018.06.096
  36. Zhang, S., Zhao, Z., Ao, Y. (2015). Design of highly efficient Zn-, Cu-, Ni- and Co-promoted M-AlPO4 solid acids: The acetalization of glycerol with acetone. Applied Catalysis A: General, 496, 32–39. DOI: 10.1016/j.apcata.2015.02.006
  37. Schuette, H.A., Hale, J.T. (1930). Some physical constants of monacetin, monopropin and mono-normal-butyrin. Journal of the American Chemical Society, 52(5), 1978–1981. DOI: 10.1021/ja01368a033
  38. Gilchrist, P.G., Schuette, H.A. (1931). Monoglycerides of the lower fatty acids. Journal of the American Chemical Society, 53(9), 3480–3484. DOI: 10.1021/ja01360a038
  39. Cho, G.H.P., Yeong, S.K., Ooi, T.L., Chuah, C.H. (2006). Glycerol esters from the reaction of glycerol with dicarboxylic acid esters. Journal of Surfactants and Detergents, 9(2), 147–152. DOI: 10.1007/s11743-006-0384-9
  40. Rathod, A.P., Wasewar, K.L., Sonawane, S.S. (2014). Enhancement of esterification of propionic acid with ethanol by pervaporation reactor. Research Journal of Chemistry and Environment, 18(5), 41–44. DOI: 10.1155/2014/539341
  41. Saengarun, C., Petsom, A., Tungasmita, D.N. (2017). Etherification of glycerol with propylene or 1-butene for fuel additives. Scientific World Journal, 2017, 1-11. DOI: 10.1155/2017/4089036
  42. Preethi, E.L., Revathi, S., Sivakumar, T., Manikandan, D., Divakar, D., Valentine-Rupa, A., Palanichami, M. (2008). Phenol hydroxylation using Fe/Al-MCM-41 catalysts. Catalysis Letters, 120(1–2), 56–64. DOI: 10.1007/s10562-007-9249-8
  43. Decyk, P., Trejda, M., Ziolek, M., Kujawa, J., Głaszczka, K., Bettahar, M., Monteverdi, S., Mercy, M. (2003). Physicochemical and catalytic properties of iron-doped silica - The effect of preparation and pretreatment methods. Journal of Catalysis, 219(1), 146–155. DOI: 10.1016/S0021-9517(03)00186-6
  44. Missen, R.W., Mims, C.A., Saville, B.A. (1999). Introduction to Chemical Reaction Engineering and Kinetics, New York, John Wiley & Sons
  45. Silva, C., Mota, C.J.A., Pinto, B.P. (2008). Acetylation of glycerol catalyzed by different solid acids. Catalysis Today, 133-135, 673–677. DOI: 10.1016/j.cattod.2007.12.037
  46. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L. (1992). A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. Journal of the American Chemical Society, 114(27), 10834–10843. DOI: 10.1021/ja00053a020
  47. Ajaikumar, S., Pandurangan, A. (2008). Reaction of benzaldehyde with various aliphatic glycols in the presence of hydrophobic Al-MCM-41: A convenient synthesis of cyclic acetals. Journal of Molecular Catalysis A: Chemical, 290(1–2), 35–43. DOI: 10.1016/j.molcata.2008.04.008
  48. Mate, V.R., Shirai, M., Rode, C.V. (2013). Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catalysis Communications, 33(3), 66–69. DOI: 10.1016/j.catcom.2012.12.015
  49. Abdelkader, A., Daly, H., Saih, Y., Morgan, K., Mohamed, M.A., Halawy, S.A., Hardacre, C. (2013). Steam reforming of ethanol over Co3O4-Fe2O3 mixed oxides. International Journal of Hydrogen Energy, 38(20), 8263–8275. DOI: 10.1016/j.ijhydene.2013.04.009
  50. Alves, I.C.B., Santos, J.R.N., Viégas, D.S.S., Marques, E.P., Lacerda, C.A., Zhang, L., Zhang, J., Marques, A.L.B. (2019). Nanoparticles of Fe2O3 and Co3O4 as efficient electrocatalysts for oxygen reduction reaction in acid medium. Journal of the Brazilian Chemical Society, 30(12), 2681–2690. DOI: 10.21577/0103-5053.20190195
  51. Ertl, G., Knözinger, H., Schülf, F, Weitkamp, J. (1997). Handbook of Heterogeneous Catalysis, Germany, Wiley-VCH
  52. Fontes, M.S.B., Melo, D.M.A., Costa, C.C., Melo, M.A.F., Alvez, J.A.B.L.R., Silva, M.L.P. (2016). Effect of different silica sources on textural parameters of molecular sieve MCM-41. Ceramica, 62, 85-90. DOI: 10.1590/0366-69132016623611966
  53. Selvaraj, M., Pandurangan, A., Seshadri, K.S., Sinha, P.K., Lal, K.B. (2003). Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al. Applied Catalysis A: General, i(2), 347–364. DOI: 10.1016/S0926-860X(02)00527-6
  54. Camblor, M.A., Corma, A., Pérez-Pariente, J. (1993). Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm–1 band. Journal of the Chemical Society, Chemical Communications, 6, 557–559. DOI: 10.1039/C39930000557
  55. Vidya, K., Gupta, N.M., Selvam, P. (2004). Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Materials Research Bulletin, 39(13), 2035–2048. Doi: 10.1016/j.materresbull.2004.07.013
  56. Alves, I.C.B., Santos, J.R.N., Viégas, D.S.S., Marques, E.P., Lacerda, C.A., Zhang, L., Zhang, J, Marques, A.L.B. (2019). Nanoparticles of Fe2O3 and Co3O4 as efficient electrocatalysts for oxygen reduction reaction in acid medium. Journal of the Brazilian Chemical Society, 30, 2681-2690. DOI: 10.21577/0103-5053.20190195
  57. Sahoo, S., Agarwal, K., Singh, A., Polke, B., Raha, K. (2011). Characterization of g- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. International Journal of Engineering, Science and Technology, 2(8), 118–126. DOI: 10.4314/ijest.v2i8.63841
  58. Varghese, S., Cutrufello, M.G., Rombi, E., Cannas, C., Monaci, R., Ferino, I. (2012). CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts. Applied Catalysis A: General, 443–444, 161–170. DOI: 10.1016/j.apcata.2012.07.038
  59. Borade, R.B., Clearfield, A. (1995). Synthesis of aluminum rich MCM-41. Catalysis Letters, 31(2–3), 267–272. DOI: 10.1007/BF00808839
  60. Savidha, R, Pandurangan, A. (2004) Isopropylation of toluene: a comparative study of microporous zeolites and mesoporous MCM-41 materials. Applied Catalysis A: General, 276, 39–50. DOI: 10.1016/j.apcata.2004.04.015
  61. Carmo Jr, A.C., Souza, L.K.C., Costa, C.E.F., Longo, E., Zamina, J.R., Rocha-Filho, G.N. (2009) Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel, 88, 461-468. DOI: 10.1016/j.fuel.2008.10.007
  62. Samanta, S., Giri, S., Sastry, P.U., Mal, N.K., Manna, A., Bhaumik, A. (2003). Synthesis and characterization of iron-rich highly ordered mesoporous Fe-MCM-41. Industrial and Engineering Chemistry Research, 42(13), 3012–3018. DOI: 10.1021/ie020905g
  63. Tran, N.T.T., Uemura, Y., Ramli, A. (2016). Hydrodeoxygenation of Guaiacol over Al-MCM-41 Supported Metal Catalysts: A Comparative Study of Co and Ni. Procedia Engineering, 148, 1252–1258. DOI: 10.1016/j.proeng.2016.06.488
  64. Udayakumar, S., Ajaikumar, S., Pandurangan, A. (2006). Synthesis of commercial important diethyl phthalate over Al-, Fe- and Al, Zn-MCM-41 molecular sieves. Applied Catalysis A: General, 307(2), 245–256. DOI: 10.1016/j.apcata.2006.03.059
  65. Fletcher, R.E., Ling, S., Slater, B. (2017). Violations of Löwenstein’s rule in zeolites. Chemical Science, 8(11), 7483–7491. DOI: 10.1039/c7sc02531a
  66. Uytterhoeven, J.B., Christner, L.G., Hall, W.K. (1965). Studies of the hydrogen held by solids. VIII. The decationated zeolites. Journal of Physical Chemistry, 69(6), 2117–2126. DOI: 10.1021/j100890a052
  67. Pearson, R.G. (1963). Hard and Soft Acids and Bases. Journal of the American Chemical Society, 85(22), 3533–3539. DOI: 10.1021/ja00905a001
  68. Vasconcellos, M.L.A.A. (2014) A Teoria de Pearson para a disciplina de química orgânica: um exercício prático e teórico aplicado em sala de aula. Química Nova, 37, 171–175. DOI: 10.1590/S0100-40422014000100029

Last update:

No citation recorded.

Last update:

No citation recorded.