Kinetic Studies of the Glycerolysis of Urea to Glycerol Carbonate in the Presence of Amberlyst-15 as Catalyst

*Hary Sulistyo scopus  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
Wahyudi Budi Sediawan orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Indonesia
Reviana Inda Dwi Suyatno  -  Department of Polymer Chemical Engineering, Politeknik STMI, Indonesia
Indah Hartati orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Wahid Hasyim, Indonesia
Received: 8 Sep 2020; Revised: 19 Jan 2021; Accepted: 20 Jan 2021; Published: 31 Mar 2021; Available online: 29 Jan 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Amberlyst-15, a strong acidic ion-exchange resin, has showed as a potential and an effective catalyst for the glycerolysis process of urea to glycerol carbonate. In this work, the kinetic model of the urea glycerolysis over Amberlyst-15 catalyst was investigated. The kinetic model was developed by considering simultaneous steps of urea dissolution in glycerol, mass transfer of urea and glycerol from the bulk of the liquid into the outer part of the catalyst, diffusion of urea and glycerol into the inner part of the particle through the catalyst pores, and irreversible second order reaction of urea and glycerol on the active sites. The irreversibility of second order reaction of urea glycerolysis was validated and proven. The proposed kinetic model was simulated and validated with the experimental data. The kinetic studies show that mechanism proposed works well. Furthermore, the activation energy was found to be 145.58 kJ.mol1 and the collision factor was in 8.00×1010 (m3)2.kg1.mol1.s1. The simulation result shows that the predicted liquid temperatures were close to the experimental temperature data. It also gave glycerol concentration profile inside the catalyst particle as a function of glycerolysis time and position. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Amberlyst-15; Glycerolysis; Glycerol carbonate; Kinetics; Urea
Funding: Ministry of Research, Technology and Higher Education of Republic of Indonesia

Article Metrics:

  1. Kong, P.S., Kheireddine, M., Mohd, W., Wan, A. (2016). Conversion of crude and pure glycerol into derivatives : A feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533–555, doi: 10.1016/j.rser.2016.05.054
  2. Galadima, A., Muraza, O. (2020). Waste materials for production of biodiesel catalysts: Technological status and prospects. Journal of Cleaner Production, 262, 121358, doi: 10.1016/j.jclepro.2020.121358
  3. Fernandes, G.P., Yadav, G.D. (2017). Selective glycerolysis of urea to glycerol carbonate using combustion synthesized magnesium oxide. Catalysis Today, 309, 153–160, doi: 10.1016/j.cattod.2017.08.021
  4. Slamet, S., Kusrini, E. (2015). Photocatalytic Hydrogen Production from Glycerol-water over Metal Loaded and Non-metal Doped Titanium Oxide. International Journal of Technology, 4, 520–532, doi: 10.14716/ijtech.v6i4.2176
  5. Nomanbhay, S., Ong, M.Y., Chew, K.W., Show, P., Lam, M.K., Chen, W. (2020). Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production : A Review. Energies, 13(6), 1483, doi: 10.3390/en13061483
  6. Bartoli, M., Zhu, C., Chae, M., Bressler, D.C. (2018). Value-Added Products from Urea Glycerolysis Using a Heterogeneous Biosolids-Based Catalyst. Catalysts, 8(9), 373, doi: 10.3390/catal8090373
  7. Sulistyo, H., Huda, E.N., Utami, T.S., Sediawan, W.B., Rahayu, S.S., Azis, M.M. (2020). Solketal production by glycerol acetalization using amberlyst -15 catalyst. ASEAN Journal of Chemical Engineering. 20(1), 67–76, doi: 10.22146/ajche.52455
  8. Zafar, M., Oman, S., Kumar, S., Kumar, S., Agrawal, J. Dhiman, A.K. (2014). Valorization of Glycerol into Polyhydroxyalkanoates by Sludge Isolated Bacillus sp . RER002 : Experimental and Modeling Studies. Chemical Product and Process Modeling, 9(2), 117–131, doi: 10.1515/cppm-2014-001
  9. Climent, M.J., Corma, A., De-Fruots, P., Iborra, S., Noy, M., Velty, A., Concepcion, P. (2010). Chemicals from biomass: Synthesis of glycerol carbonate by transesterification and carbonylation with urea with hydrocalcite catalysts. The role of acid-base pairs. Journal of Catalyst, 269, 140–149, doi: 10.1016/j.jcat.2009.11.001
  10. Sonnati, M.O., Amigoni, S., Darmanin, T., Choulet, O. (2013). Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 15, 283–306, doi: 10.1039/c2gc36525a
  11. Pradhan, G., Sharma, Y.C. (2020). Studies on green synthesis of glycerol carbonate from waste cooking oil derived glycerol over an economically viable NiMgOx heterogeneous solid base catalyst. Journal of Cleaner Production, 264, 121258, doi: 10.1016/j.jclepro.2020.121258
  12. Aresta, M., Dibenedetto, A., Nocito, F., Ferragina, C. (2009). Valorization of bio-glycerol : New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. Journal of Catalysis, 268(1), 106–114, doi: 10.1016/j.jcat.2009.09.008
  13. Teng, W.K., Ngoh, G.C., Yusoff, R., Aroua, M. K. (2014). A review on the performance of glycerol carbonate production via catalytic transesterification : Effects of influencing parameters. Energy Conversion and Management, 88, 484–497, doi: 10.1016/j.enconman.2014.08.036
  14. Wang, D., Zhang, X., Cong, X., Liu, S., Zhou, D. (2018). Influence of Zr on the performance of Mg-Al catalysts via hydrotalcite-like precursors for the synthesis of glycerol carbonate from urea and glycerol. Applied Catalysis A: General, 555, 36–46, doi: 10.1016/j.apcata.2018.02.009
  15. Lertlukkanasuk, N., Phiyanalinmat, S., Kiatkittipong, W. (2013). Chemical Engineering and Processing : Process Intensification Reactive distillation for synthesis of glycerol carbonate via glycerolysis of urea. Chemical Engineering & Processing: Process Intensification, 70, 103–109, doi: 10.1016/j.cep.2013.05.001
  16. Sulistyo, H., Sabariyanto, Ridho, M.N., Azis, M.M. (2019). Kinetics Modeling of Glycerol Carbonate Synthesis from Glycerol and Urea over Amberlyst-15 Catalyst. Indonesian Journal of Chemistry, 19(4), 1066–1073, doi: 10.22146/ijc.42879
  17. Qing, Y., Lu, H., Liu, Y., Liu, C., Liang, B., Jiang, W. (2018). Production of glycerol carbonate using crude glycerol from biodiesel production with DBU as a catalyst. Chinese Journal of Chemical Engineering, 26(9), 191–1919, doi: 10.1016/j.cjche.2018.01.010
  18. Fogler, H.S. (2005). Elements of Chemical Reaction Engineering. Fourth Edition. New Jersey: Prentice Hall
  19. Amin, M., Alhalaweh, A., Velaga, S.P. (2011). Hansen solubility parameter as a tool to predict cocrystal formation. International Journal of Pharmaceutics, 407(1–2), 63–71, doi: 10.1016/j.ijpharm.2011.01.030
  20. Hansen, C. M. (2000). Hansen solubility parameters A User’s Handbook (second edi). Boca Raton: CRC Press
  21. Kitak, T., Dumiˇ, A. (2015). Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate. Molecules, 20(12), 21549–21568, doi: 10.3390/molecules201219777
  22. Li, J., Wang, T. (2011). Chemical equilibrium of glycerol carbonate synthesis from glycerol. The Journal of Chemical Thermodynamics, 43(5), 731–736, doi: 10.1016/j.jct.2010.12.01
  23. Sulistyo, H., Priadana, D.P., Fitriandini, Y.W., Ariyanto, T., Azis, M.M. (2020). Utilization of Glycerol by Ketalization Reactions with Acetone to Produce Solketal using Indion 225 Na as Catalyst. International Journal of Technology, 11(1), 190–199, doi: 10.14716/ijtech.v11i1.3093
  24. Agirre, I., Güemez, M.B., Ugarte, A., Requies, J., Barrio, V.L., Cambra, J.F., Arias, P.L. (2013). Glycerol Acetals as Diesel Additives: Kinetic Study of the Reaction between Glycerol and Acetaldehyde. Fuel Processing Technology, 116, 182–188, doi: 10.1016/j.fuproc.2013.05.014
  25. Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.A., Xu, C. (2014). Thermodynamic and Kinetic Studies of a Catalytic Process to Convert Glycerol into Solketal as an Oxygenated Fuel Additive. Fuel, 117, 470–477, doi: 10.1016/j.fuel.2013.09.066
  26. Yadav, G.D., Chandan, P.A. (2014). A Green Process for Glycerol Valorization to Glycerol Carbonate over Heterogeneous Hydrotalcite Catalyst. Catalysis Today, 237, 47–53, doi: 10.1016/j.cattod.2014.01.043
  27. Hammond, C., Lopez-Sanchez, J., Ab Rahim, M.H., Dimitratos, N., Jenkins, R.L., Carley, A.F., He, Q., Kiely, C.J., Knight, D.W., Hutchings, G.J. (2011). Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts
  28. Dalton Transactions, 40, 3927–3937, doi: 10.1039/C0DT01389G
  29. Zhang, J., He, D. (2014). Lanthanum-Based Mixed Oxides for The Synthesis of Glycerol Carbonate from Glycerol and Urea. Reaction Kinetics. Reaction Kinetics, Mechanisms and Catalysis, 113(2), 375–392, doi: 10.1007/s11144-014-0739-6
  30. Kondawar, S.E., Mane, R.B., Vasishta, A., More, S.B., Dhengale, S.D., Rode, C.V. (2017). Carbonylation of glycerol with urea to glycerol carbonate over supported Zn catalysts. Applied Petrochemical Research, 7(1), 41–53, doi: 10.1007/s13203-017-0177-2
  31. De Caro, P., Bandres, M., Urrutigoïty, M., Cecutti, C., Thiebaud-roux, S. (2019). Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties. Frontiers in Chemistry, 7, 308, doi: 10.3389/fchem.2019.00308
  32. Soto, R., Fité, C., Ramírez, E., Iborra, M., Tejero, J. (2018). Catalytic activity dependence on morphological properties of acidic ion-exchange resins for the simultaneous ETBE and TAEE liquid-phase synthesis. Reaction Chemistry & Engineering, 3, 195–205, doi: 10.1039/C7RE00177K
  33. Kulczycki, A., Kajdas, C. (2013). A New Attempt to Better Understand Arrehnius Equation and Its Activation Energy, In: Tribology in Engineering. Intech: 47–62. doi: 10.5772/54503
  34. Kim, D., Kim, M., Roshith, K., Kim, M., Kwak, J., Park, D. (2014). Comparative catalytic activity of supported ZnBr 2 -containing ionic liquid catalysts for preparation of glycerol carbonate by glycerolysis of urea. Korean Journal of Chemical Engineering, 31(6), 972–980, doi: 10.1007/s11814-013-0296-0

Last update: 2021-04-21 12:18:11

No citation recorded.

Last update: 2021-04-21 12:18:13

No citation recorded.