Optimization of Microwave-Assisted Alkali Pretreatment for Enhancement of Delignification Process of Cocoa Pod Husk

*Maktum Muharja orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Rizki Fitria Darmayanti orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Bekti Palupi scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Istiqomah Rahmawati scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Boy Arief Fachri orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Felix Arie Setiawan orcid  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Helda Wika Amini orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Meta Fitri Rizkiana orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Atiqa Rahmawati  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Ari Susanti  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Ditta Kharisma Yolanda Putri  -  Department of Chemical Engineering, Faculty of Engineering, University of Jember, Indonesia
Received: 5 Sep 2020; Revised: 15 Jan 2021; Accepted: 16 Jan 2021; Published: 31 Mar 2021; Available online: 17 Jan 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

In this study, the optimization of microwave-assisted alkaline (MAA) pretreatment is performed to attain the optimal operating parameters for the delignification of cocoa pod husk (CPH). The MAA performance was examined by heating the CPH solid with different particle sizes (60–120 mesh) and NaOH solution with a different sample to a solvent (SS) ratio (0.02–0.05 g/L), for short irradiation time (1–4 min). Box-Behnken Design (BBD) was utilized to optimize the percentage of lignocellulose composition changes. The results show that by enlarging particle size, the content of lignin and cellulose decreased while hemicellulose increased. By prolong irradiation time, the content of lignin and hemicellulose decreased while cellulose elevated. On the other hand, increasing the SS ratio was not significant for hemicellulose content changes. From FTIR and SEM characterization, the MAA drove the removal of lignin and hemicellulose of CPH and increased cellulose slightly. Supported by kinetic study which conducted in this work, it was exhibited that MAA pretreatment technology is an effective delignification method of CPH which can tackle the bottleneck of its commercial biofuel production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: alkaline; biofuel; cocoa pod husk; delignification; microwave
Funding: Ministry of Research, Technology, and Higher Education of Republic Indonesia

Article Metrics:

  1. Gazliya, N., Aparna, K. (2019). Microwave-assisted alkaline delignification of banana peduncle. Journal of Natural Fibers, 1–10, doi: 10.1080/15440478.2019.1645786
  2. Gollakota, A.R.K., Kishore, N., Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378–1392, doi: 10.1016/j.rser.2017.05.178
  3. Muharja, M., Fadhilah, N., Nurtono, T., Widjaja, A. (2020). Enhancing enzymatic digestibility of coconut husk using nitrogen assisted-subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 84–95, doi: 10.9767/bcrec.15.1.5337.84-95
  4. Muharja, M., Junianti, F., Ranggina, D., Nurtono, T., Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249, 268–275, doi: 10.1016/j.biortech.2017.10.024
  5. Darmayanti, R.F., Amini, H.W., Rizkiana, M.F., Setiawan, F.A., Palupi, B., Rahmawati, I., Susanti, A., Fachri, B.A. (2019). Lignocellulosic material from main indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN Journal of Engineering and Applied Sciences, 14(20), 3524–3534
  6. Rajeswari, G., Arutselvy, B., Jacob, S. (2020). Delignification of Aloe Vera Rind by Mild Acid Associated Microwave Pretreatment to Persuade Enhanced Enzymatic Saccharification. Waste and Biomass Valorization, 11, 5965–5975, doi: 10.1007/s12649-019-00830-7
  7. Muharja, M., Fadhilah, N., Darmayanti, R.F., Sangian, H.F., Nurtono, T., Widjaja, A. (2020). Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 786–797, doi: 10.9767/bcrec.15.3.8870.786-797
  8. Kohli, K., Katuwal, S., Biswas, A., Sharma, B.K. (2020). Effective delignification of lignocellulosic biomass by microwave assisted deep eutectic solvents. Bioresource Technology, 303, 122897, doi: 10.1016/j.biortech.2020.122897
  9. Muley, P.D., Mobley, J.K., Tong, X., Novak, B., Stevens, J., Moldovan, D., Shi, J., Boldor, D. (2019). Rapid microwave-assisted biomass delignification and lignin depolymerization in deep eutectic solvents. Energy Conversion and Management, 196, 1080–1088, doi: 10.1016/j.enconman.2019.06.070
  10. Muharja, M., Umam, D.K., Pertiwi, D., Zuhdan, J., Nurtono, T., Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274(November 2018), 89–96. doi: 10.1016/j.biortech.2018.11.074
  11. Liu, Y., Sun, B., Zheng, X., Yu, L., Li, J. (2018). Integrated microwave and alkaline treatment for the separation between hemicelluloses and cellulose from cellulosic fibers. Bioresource Technology, 247, 859–863, doi: 10.1016/j.biortech.2017.08.059
  12. Sorn, V., Chang, K.L., Phitsuwan, P., Ratanakhanokchai, K., Dong, C.D. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929, doi: 10.1016/j.biortech.2019.121929
  13. Muharja, M., Junianti, F., Nurtono, T., Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840(1), 30004, doi: 10.1063/1.4982264
  14. Avelino, F., da Silva, K.T., de Souza Filho, M.S.M., Mazzetto, S.E., Lomonaco, D. (2018). Microwave-assisted organosolv extraction of coconut shell lignin by Brønsted and Lewis acids catalysts. Journal of Cleaner Production, 189, 785–796, doi: 10.1016/j.jclepro.2018.04.126
  15. Kamalini, A., Muthusamy, S., Ramapriya, R., Muthusamy, B., Pugazhendhi, A. (2018). Optimization of sugar recovery efficiency using microwave assisted alkaline pretreatment of cassava stem using response surface methodology and its structural characterization. Journal of Molecular Liquids, 254, 55–63, doi: 10.1016/j.molliq.2018.01.091
  16. Alexander, R.A., Innasimuthu, G.M., Rajaram, S.K., Jeganathan, P.M., Chellam Somasundarar, S. (2020). Process optimization of microwave-assisted alkali pretreatment for enhanced delignification of Prosopis juliflora biomass. Environmental Progress and Sustainable Energy, 39(1), 1–11, doi: 10.1002/ep.13289
  17. Avelino, F., Marques, F., Soares, A.K.L., Silva, K.T., Leitão, R.C., Mazzetto, S.E., Lomonaco, D. (2019). Microwave-Assisted Organosolv Delignification: A Potential Eco-Designed Process for Scalable Valorization of Agroindustrial Wastes. Industrial and Engineering Chemistry Research, 58(25), 10698–10706, doi: 10.1021/acs.iecr.9b01168
  18. Datta, R. (1981). Acidogenic fermentation of lignocellulose-acid yield and conversion of components. Biotechnology and Bioengineering, 23(9), 2167–2170, doi: 10.1002/bit.260230921
  19. Fachri, B.A., Sari, P., Yuwanti, S., Subroto, E. (2020). Experimental study and modeling on supercritical CO2 extraction of Indonesian raw propolis using response surface method: Influence of pressure, temperature and CO2 mass flowrate on extraction yield. Chemical Engineering Research and Design, 153, 452–462, doi: 10.1016/j.cherd.2019.11.014
  20. Zhu, Z., Macquarrie, D.J., Simister, R., Gomez, L.D., McQueen-Mason, S.J. (2015). Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes. Sustainable Chemical Processes, 3(1), 15, doi: 10.1186/s40508-015-0041-6
  21. Subhedar, P.B., Gogate, P.R. (2014). Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216–225, doi: 10.1016/j.ultsonch.2013.08.001
  22. Kim, J.S., Lee, Y.Y., Kim, T.H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48, doi: 10.1016/j.biortech.2015.08.085
  23. Aguilar-Reynosa, A., Romaní, A., Rodríguez-Jasso, R.M., Aguilar, C.N., Garrote, G., Ruiz, H.A. (2017). Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 243, 273–283, doi: 10.1016/j.biortech.2017.06.096
  24. Asomaning, J., Haupt, S., Chae, M., Bressler, D.C. (2018). Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals. Renewable and Sustainable Energy Reviews, 92, 642–657, doi: 10.1016/j.rser.2018.04.084
  25. Zhou, L., Budarin, V., Fan, J., Sloan, R., Macquarrie, D. (2017). Efficient Method of Lignin Isolation Using Microwave-Assisted Acidolysis and Characterization of the Residual Lignin. ACS Sustainable Chemistry & Engineering, 5(5), 3768–3774, doi: 10.1021/acssuschemeng.6b02545
  26. Panthapulakkal, S., Kirk, D., Sain, M. (2015). Alkaline extraction of xylan from wood using microwave and conventional heating. Journal of Applied Polymer Science, 132(4), 41330, doi: 10.1002/app.41330
  27. Adjin-Tetteh, M., Asiedu, N., Dodoo-Arhin, D., Karam, A., Amaniampong, P.N. (2018). Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Industrial Crops and Products, 119, 304–312, doi: 10.1016/j.indcrop.2018.02.060
  28. Chun, K.S., Husseinsyah, S., Osman, H. (2014). Development of biocomposites from Cocoa pod husk and Polypropylene: Effect of filler content and 3-aminopropyltriethoxylsilane. Polymers from Renewable Resources, 5(4), 139–156, doi: 10.1177/204124791400500401
  29. Wang, H., Chen, C., Fang, L., Li, S., Chen, N., Pang, J., Li, D. (2018). Effect of delignification technique on the ease of fibrillation of cellulose II nanofibers from wood. Cellulose, 25(12), 7003–7015, doi: 10.1007/s10570-018-2054-2
  30. Noguchi, T., Tashiro, Y., Yoshida, T., Zheng, J., Sakai, K., Sonomoto, K. (2013). Efficient butanol production without carbon catabolite repression from mixed sugars with Clostridium saccharoperbutylacetonicum N1-4. Journal of Bioscience and Bioengineering, 116(6), 716–721, doi: 10.1016/j.jbiosc.2013.05.030
  31. Keshwani, D.R., Cheng, J.J. (2010). Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass. Biotechnology and Bioengineering, 105(1), 88–97, doi: 10.1002/bit.22506

Last update: 2021-04-21 05:27:15

No citation recorded.

Last update: 2021-04-21 05:27:16

No citation recorded.