Effect of Severity Factor on the Subcritical Water and Enzymatic Hydrolysis of Coconut Husk for Reducing Sugar Production

Maktum Muharja orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Indonesia
Nur Fadhilah  -  Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Indonesia
Rizki Fitria Darmayanti orcid  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Indonesia
Hanny Frans Sangian orcid  -  Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Indonesia
Tantular Nurtono  -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
*Arief Widjaja scopus  -  Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
Received: 4 Sep 2020; Revised: 17 Oct 2020; Accepted: 17 Oct 2020; Published: 28 Dec 2020; Available online: 28 Oct 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Preventing the further degradation of monomeric or oligomeric sugar into by-product during biomass conversion is one of the challenges for fermentable sugar production. In this study, the performance of subcritical water (SCW) and enzymatic hydrolysis of coconut husk toward reducing sugar production was investigated using a severity factor (SF) approach. Furthermore, the optimal condition of SCW was optimized using response surface methodology (RSM), where the composition changes of lignocellulose and sugar yield as responses. From the results, at low SF of SCW, sugar yield escalated as increasing SF value. In the enzymatic hydrolysis process, the effect of SCW pressure is a significant factor enhancing sugar yield. A maximum total sugar yield was attained on the mild SF condition of 2.86. From this work, it was known that the SF approach is sufficient parameter to evaluate the SCW and enzymatic hydrolysis of coconut husk. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: coconut husk; enzymatic hydrolysis; reducing sugar; severity; subcritical water
Funding: Ministry of Research Technology and Higher Education, Republic of Indonesia

Article Metrics:

  1. Kumar, G., Shobana, S., Nagarajan, D., Lee, D.J., Lee, K.S., Lin, C.Y., Chen, C.Y., Chang, J.S. (2018). Biomass based hydrogen production by dark fermentation - recent trends and opportunities for greener processes. Current Opinion in Biotechnology, 50, 136–145. DOI: 10.1016/j.copbio.2017.12.024
  2. Ren, N.Q., Zhao, L., Chen, C., Guo, W.Q., Cao, G.L. (2016). A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights. Bioresource Technology, 215, 92–99. DOI: 10.1016/j.biortech.2016.03.124
  3. Widjaja, A., Agnesty, S.Y., Sangian, H.F., Gunawan, S. (2015). Application of ionic liquid [DMIM]DMP pretreatment in the hydrolysis of sugarcane Bagasse for biofuel production. Bulletin of Chemical Reaction Engineering & Catalysis, 10(1), 70–77. DOI: 10.9767/bcrec.10.1.7143.70-77
  4. Prado, J.M., Forster-Carneiro, T., Rostagno, M.A., Follegatti-Romero, L.A., Maugeri Filho, F., Meireles, M.A.A. (2014). Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. Journal of Supercritical Fluids, 89, 89–98. DOI: 10.1016/j.supflu.2014.02.017
  5. Muharja, M, Junianti, F., Ranggina, D., Nurtono, T., Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249, 268–275. DOI: 10.1016/j.biortech.2017.10.024
  6. Sangian, H.F., Kristian, J., Rahma, S., Dewi, H.K., Puspasari, D.A., Agnesty, S.Y., Gunawan., S., Widjaja, A. (2015). Preparation of reducing sugar hydrolyzed from high-lignin coconut coir dust pretreated by the recycled ionic liquid [mmim][dmp] and combination with alkaline. Bulletin of Chemical Reaction Engineering & Catalysis, 10(1), 8–22. DOI: 10.9767/bcrec.10.1.7058.822
  7. Putrino, F.M., Tedesco, M., Bodini, R.B., Oliveira, A.L.de. (2020). Study of supercritical carbon dioxide pretreatment processes on green coconut fiber to enhance enzymatic hydrolysis of cellulose. Bioresource Technology, 309, 123387. DOI: 10.1016/j.biortech.2020.123387
  8. Fachri, B.A., Rizkiana, M.F., Muharja, M. (2020). A Kinetic Study on Supercritical Carbon-dioxide Extraction of Indonesian Trigona sp. Propolis. IOP Conf. Series: Materials Science and Engineering, 742(012001), 1–5. DOI: 10.1088/1757-899X/742/1/012001
  9. Batista M.D., Montes de Oca-Vásquez, G., Vega-Baudrit, J.R., Rojas-Álvarez, M., Corrales-Castillo, J., Murillo-Araya, L.C. (2020). Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-020-00722-0
  10. Lachos-Perez, D., Baseggio, A.M., Torres-Mayanga, P.C., Ávila, P.F., Tompsett, G.A., Marostica, M., Goldbeck, R., Timko, M.T., Rostagno, M., Martinez, J., Forster-Carneiro, T. (2020). Sequential subcritical water process applied to orange peel for the recovery flavanones and sugars. Journal of Supercritical Fluids, 160, 104789. DOI: 10.1016/j.supflu.2020.104789
  11. Abaide, E.R., Ugalde, G., Di Luccio, M., Moreira, R.de F.P.M., Tres, M.V., Zabot, G.L., Mazutti, M.A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272, 510–520. DOI: 10.1016/j.biortech.2018.10.075
  12. Xu, Y., Wang, P., Xue, S., Kong, F., Ren, H., Zhai, H. (2020). Green biorefinery — The ultra-high hydrolysis rate and behavior of Populus tomentosa hemicellulose autohydrolysis under moderate subcritical water conditions. RSC Advances, 10(32), 18908–18917. DOI: 10.1039/d0ra02350g
  13. Aguirre-Fierro, A., Ruiz, H. A., Cerqueira, M.A., Ramos-González, R., Rodríguez-Jasso, R.M., Marques, S., Lukasik, R.M. (2020). Sustainable approach of high-pressure agave bagasse pretreatment for ethanol production. Renewable Energy, 155, 1347–1354. DOI: 10.1016/j.renene.2020.04.055
  14. Rasmussen, H., Sørensen, H.R., Meyer, A.S. (2014). Formation of degradation compounds from lignocellulosic biomass in the biorefinery: Sugar reaction mechanisms. Carbohydrate Research, 385, 45–57. DOI: 10.1016/j.carres.2013.08.029
  15. Sun, S., Sun, S., Cao, X., Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49–58. DOI: 10.1016/j.biortech.2015.08.061
  16. Jönsson, L.J., Martín, C. (2016). Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112. DOI: 10.1016/j.biortech.2015.10.009
  17. Pedras, B.M., Nascimento, M., Sá-Nogueira, I., Simões, P., Paiva, A., Barreiros, S. (2019). Semi-continuous extraction/hydrolysis of spent coffee grounds with subcritical water. Journal of Industrial and Engineering Chemistry, (2018), 8–11. DOI: 10.1016/j.jiec.2019.01.001
  18. Kubota, A.M., Kalnins, R., Overton, T.W. (2018). A biorefinery approach for fractionation of Miscanthus lignocellulose using subcritical water extraction and a modified organosolv process. Biomass and Bioenergy, 111, 52–59. DOI: 10.1016/j.biombioe.2018.01.019
  19. Yedro, F.M., Grénman, H., Rissanen, J.V., Salmi, T., García-Serna, J., Cocero, M.J. (2017). Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water. The Journal of Supercritical Fluids, 129, 56–62. DOI: 10.1016/j.supflu.2017.01.016
  20. Fernández, M.A., Rissanen, J., Nebreda, A.P., Xu, C., Willför, S., Serna, J.G., Salmi, T., Grénman, H. (2018). Hemicelluloses from stone pine, holm oak, and Norway spruce with subcritical water extraction − comparative study with characterization and kinetics. Journal of Supercritical Fluids, 133, 647–657. DOI: 10.1016/j.supflu.2017.07.001
  21. Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J., Carrère, H. (2014). Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures ? A comprehensive review. Biotechnology Advances, 32(5), 934–951. DOI: 10.1016/j.biotechadv.2014.04.007
  22. Prado, J.M., Lachos-Perez, D., Forster-Carneiro, T., Rostagno, M.A. (2016). Sub- A nd supercritical water hydrolysis of agricultural and food industry residues for the production of fermentable sugars: A review. Food and Bioproducts Processing, 98, 95–123. DOI: 10.1016/j.fbp.2015.11.004
  23. Batista, G., Souza, R.B.A., Pratto, B., dos Santos-Rocha, M.S.R., Cruz, A.J.G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327. DOI: 10.1016/j.biortech.2018.12.073
  24. Zhu, Z., Liu, Z., Zhang, Y., Li, B., Lu, H., Duan, N., Si, B., Shen R., Lu, J. (2016). Recovery of reducing sugars and volatile fatty acids from cornstalk at different hydrothermal treatment severity. Bioresource Technology, 199, 220–227. DOI: 10.1016/j.biortech.2015.08.043
  25. Iroba, K.L., Tabil, L.G., Sokhansanj, S., Dumonceaux, T. (2014). Pretreatment and fractionation of barley straw using steam explosion at low severity factor. Biomass and Bioenergy, 66, 286–300. DOI: 10.1016/j.biombioe.2014.02.002
  26. Kumar, L., Chandra, R., Saddler, J. (2011). Influence of steam pretreatment severity on post-treatments used to enhance the enzymatic hydrolysis of pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 108(10), 2300–2311. DOI: 10.1002/bit.23185
  27. Lee, J.-W., Jeffries, T.W. (2011). Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresource Technology, 102, 5884–5890. DOI: 10.1016/j.biortech.2011.02.048
  28. Torres-Mayanga, P.C., Azambuja, S.P.H., Tyufekchiev, M., Tompsett, G.A., Timko, M.T., Goldbeck, R., Rostagno, M.A., Forster-Carneiro, T. (2019). Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). The Journal of Supercritical Fluids, 145, 19–30. DOI: 10.1016/j.supflu.2018.11.019
  29. Michelin, M., Ruiz, H.A., Polizeli, M.de L.T.M., Teixeira, J.A. (2018). Multi-step approach to add value to corncob: Production of biomass-degrading enzymes, lignin and fermentable sugars. Bioresource Technology, 247, 582–590. DOI: 10.1016/j.biortech.2017.09.128
  30. Liang, J., Chen, X., Wang, L., Wei, X., Wang, H., Lu, S., Li, Y. (2017). Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production. Bioresource Technology, 228, 147–155. DOI: 10.1016/j.biortech.2016.12.080
  31. Mayanga-Torres, P.C., Lachos-Perez, D., Rezende, C.A., Prado, J.M., Ma, Z., Tompsett, G.T., Timko, M.T., Forster-Carneiro, T. (2017). Valorization of coffee industry residues by subcritical water hydrolysis: Recovery of sugars and phenolic compounds. Journal of Supercritical Fluids, 120, 75–85. DOI: 10.1016/j.supflu.2016.10.015
  32. Muharja, M., Fadhilah, N., Nurtono, T., Widjaja, A. (2020). Enhancing enzymatic digestibility of coconut husk using nitrogen assisted-subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 84–95. DOI: 10.9767/bcrec.15.1.5337.84-95
  33. Lin, R., Cheng, J., Ding, L., Song, W., Qi, F., Zhou, J., Cen, K. (2015). Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis. Bioresource Technology, 186, 8–14. DOI: 10.1016/j.biortech.2015.03.047
  34. Muharja, M., Junianti, F., Nurtono, T., Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840, 030004. https://doi.org/10.1063/1.4982264
  35. Miller, G.L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. DOI: 10.1021/ac60147a030
  36. Muharja, M., Umam, D.K., Pertiwi, D., Zuhdan, J., Nurtono, T., Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274, 89–96. DOI: 10.1016/j.biortech.2018.11.074
  37. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L. (2014). Spanish biofuels heating value estimation. Part I : Ultimate analysis data. Fuel, 117, 1130–1138. DOI: 10.1016/j.fuel.2013.08.048
  38. Bilba, K., Arsene, M., Ouensanga, A. (2007). Study of banana and coconut W bers Botanical composition, thermal degradation, and textural observations. Bioresource Technology, 98, 58–68. DOI: 10.1016/j.biortech.2005.11.030
  39. Li, H.Z., Zhang, Z.J., Hou, T.Y., Li, X.J., Chen, T. (2015). Optimization of ultrasound-assisted hexane extraction of perilla oil using response surface methodology. Industrial Crops and Products, 76, 18–24. DOI: 10.1016/j.indcrop.2015.06.021
  40. Muharja, M, Albana, I., Zuhdan, J., Bachtiar, A., Widjaja, A. (2019). Reducing Sugar Production in Subcritical Water and Enzymatic Hydrolysis using Plackett- Burman Design and Response Surface Methodology. Jurnal Teknik ITS, 8(2), 56-61. DOI: 10.12962/j23373539.v8i2.49727.
  41. Hongdan, Z., Shaohua, X., Shubin, W. (2013). Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Bioresource Technology, 143, 391–396. DOI: 10.1016/j.biortech.2013.05.103
  42. Alimny, A.N., Muharja, M., Widjaja, A. (2019). Kinetics of Reducing Sugar Formation from Coconut Husk by Subcritical Water Hydrolysis. Journal of Physics: Conference Series, 1373, 1–8. DOI: 10.1088/1742-6596/1373/1/012006
  43. Prado, J.M., Vardanega, R., Nogueira, G.C., Forster-Carneiro, T., Rostagno, M.A., Maugeri Filho, F., Meireles, M.A.A. (2017). Valorization of Residual Biomasses from the Agri-Food Industry by Subcritical Water Hydrolysis Assisted by CO2. Energy and Fuels, 31(3), 2838–2846. DOI: 10.1021/acs.energyfuels.6b02670
  44. Zhang, H., Wu, S. (2015). Pretreatment of eucalyptus using subcritical CO2 for sugar production. Journal of Chemical Technology and Biotechnology, 90(9), 1640–1645. DOI: 10.1002/jctb.4470
  45. Mohan, M., Banerjee, T., Goud, V.V. (2015). Hydrolysis of bamboo biomass by subcritical water treatment. Bioresource Technology, 191, 244–252. DOI: 10.1016/j.biortech.2015.05.010
  46. Santos, M.S.N.do., Zabot, G.L., Mazutti, M.A., Ugalde, G.A., Rezzadori, K., Tres, M.V. (2020). Optimization of subcritical water hydrolysis of pecan wastes biomasses in a semi-continuous mode. Bioresource Technology, 306, 123–129. DOI: 10.1016/j.biortech.2020.123129
  47. Yang, T., Wang, J., Li, B., Kai, X., Li, R. (2017). Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: Differences between subcritical water and supercritical ethanol. Bioresource Technology, 229, 143–151. DOI: 10.1016/j.biortech.2016.12.110
  48. Gonzales, R.R., Sivagurunathan, P., Kim, S.H. (2016). Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. International Journal of Hydrogen Energy, 41(46), 21678–21684. DOI: 10.1016/j.ijhydene.2016.06.198
  49. Yang, W., Wang, H., Zhou, J., Wu, S. (2017). Hydrolysis Kinetics and Structure Changes of Wood Meal in Subcritical Water. ACS Sustainable Chemistry & Engineering, 5(4), 3544–3552. DOI: 10.1021/acssuschemeng.7b00300
  50. Sangian, H.F., Widjaja, A. (2017). Effect of Pretreatment Method on Structural Changes of Coconut Coir Dust. BioResources, 12(4), 8030–8046. DOI: 10.15376/biores.12.4.8030-8046
  51. Sindhu, R., Binod, P., Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass - An overview. Bioresource Technology, 199, 76–82. DOI: 10.1016/j.biortech.2015.08.030
  52. Brahmachari, G., Demain, A.L., Adrio, J.L. (2016). Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. London: Elsevier
  53. Andrić, P., Meyer, A.S., Jensen, P.A., Dam-Johansen, K. (2010). Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnology Advances, 28(3), 308–324. DOI: 10.1016/j.biotechadv.2010.01.003
  54. Van Dyk, J.S., Pletschke, B.I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480. DOI: 10.1016/j.biotechadv.2012.03.002
  55. Haldar, D., Sen, D., Gayen, K. (2016). A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route - a comparison. International Journal of Green Energy, 13(12), 1232–1253. DOI: 10.1080/15435075.2016.1181075
  56. Pino, M.S., Rodríguez-Jasso, R.M., Michelin, M., Ruiz, H.A. (2019). Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydrate Polymers, 211, 349–359. DOI: 10.1016/j.carbpol.2019.01.111
  57. Moreira, L.R.S., Filho, E.X.F. (2016). Insights into the mechanism of enzymatic hydrolysis of xylan. Applied Microbiology and Biotechnology, 100(12), 5205–5214. DOI: 10.1007/s00253-016-7555-z
  58. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R. (2010). Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 101(13), 4775–4800. DOI: 10.1016/j.biortech.2010.01.088
  59. Binod, P., Gnansounou, E., Sindhu, R., Pandey, A. (2019). Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresource Technology Reports, 5, 317–325. DOI: 10.1016/j.biteb.2018.06.005

Last update: 2021-04-19 22:31:46

No citation recorded.

Last update: 2021-04-19 22:31:47

  1. Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk

    Muharja M.. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (1), 2021. doi: 10.9767/BCREC.16.1.8872.31-43