Study of the Interaction of Heavy Metals (Cu(II), Zn(II)) Ions with a Clay Soil of the Region of Naima-Tiaret-Algeria

Taibi Mohamed  -  Laboratoire des Sciences Technologie et Génie des Procédés (L.S.T.G.P.), Faculté de chimie, Université des Sciences et de la technologie d’Oran Mohammed Boudiaf (USTO M.B.), Algeria
*Elaziouti Abdelkader orcid  -  Laboratoire des Sciences Technologie et Génie des Procédés (L.S.T.G.P.), Faculté de chimie, Université des Sciences et de la technologie d’Oran Mohammed Boudiaf (USTO M.B.), Algeria
Laouedj Nadjia  -  Laboratoire de Chimie des Matériaux Inorganiques et Application (L.C.M.I.A.), Université des Sciences et de la Technologie d’Oran Mohammed Boudiaf (USTO M.B.), Algeria
Dellal Abdelkader  -  Directeur de Laboratoire d'Agro-biotechnologie et de Nutrition en Zones Semi-arides, Université Ibn Khaldoun T, Algeria
Received: 26 Aug 2020; Revised: 9 Oct 2020; Accepted: 9 Oct 2020; Published: 28 Dec 2020; Available online: 19 Oct 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The RM (RM stands for the pristine clay) collected from sites in the Naima-Tiaret-Algeria and its purified phase TM (TM stands for the treated clay) were characterized using XRF, XRD, FT−IR, SEM−EDX, and DC electrical conductivity techniques. The as-prepared clays were used as potential adsorbents for the removal of Cu2+ and Zn2+ metals ions. Highly purified clay TM, exhibiting a basal, spacing of 25.83 Å and CEC of 51 meq/100 g, was obtained. The type of interstratified I/M in the studied sites is S=1, based on the calculation method of Watanabe. The percentage of illite type S=1 is between 80−85% illite. The adsorption equilibrium was established in 60 min with the capacities of 28.57 and 24.39 mg/g for Cu2+ onto RM, 32.25 and 4.95 mg/g for Zn2+ in the presence of TM. D-R isotherm model was more suitable with the adsorption process than Freundlich and Langmuir models suggesting the ion exchange nature of the retention mechanism in most cases (E > 8 kJ/mol). Pseudo second-order model best described the kinetics of adsorption process. The adsorption mechanism was mainly monitored by ion exchange mechanism between exchangeable interlayer cations (Na) in the interstratified I/M and Cu2+ or Zn2+ metals from aqueous matrix. Further, the release of H+ ions from the edge of the layer structure in acidic environments promote the adsorption of heavy metals onto the surfaces interstratified I/M clay soils via electrostatic attraction. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Interstratification Illite/Montmorillonite; Clay Soil; Heavy metals; Adsorption; Kinetics; Cu(II); Zn(II)
Funding: Directorate General for Scientific Research and Technological Development, the Ministry of Higher Education and Scientific Research, Algeria

Article Metrics:

  1. Kaličanin, B., Todorovska Rašić, M. (2019). The Significance of Chelation Therapy in Heavy Metal Intoxication. Journal of Heavy Metal Toxicity and Diseases, 4, 1−10. DOI: 10.21767/2473-6457.10029
  2. ElSayed ElBastamy, E. (2018). Natural diatomite as an effective adsorbent for heavy metals in waterand wastewater treatment (a batch study). Water Science, 32, 32−43. DOI: 10.1016/j.wsj.2018.02.001
  3. White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol, 182, 49−84. DOI: 10.1111/j.1469-8137.2008.02738.x
  4. Elom, N.I., Entwistle, J., Dean, J.R. (2014). Human health risk from Pb in urban street dust in northern UK cities. Environmental Chemistry Letters, 12, 209−218. DOI: 10.1007/s10311-013-0436-0
  5. Salazar-Flores, J., Torres-Jasso, J.H., Rojas-Bravo, D., Reyna-Villela Z.M., Torres-Sánchez, E.D. (2019). Effects of Mercury, Lead, Arsenic and Zinc to Human Renal Oxidative Stress and Functions: A Review. Journal of Heavy Metal Toxicity and Diseases, 4, 1−16. DOI: 10.21767/2473-6457.10027
  6. Gu, S., Kang, X., Wang, L., Lichtfouse, E., Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17, 629−654. DOI: 10.1007/s10311-018-0813-9
  7. Elaziouti, A., Laouedj, N., Vannier, R.N. (2015). Adsorption of Congo red azo dye on nanosized SnO2 derived from sol-gel method. International Journal of Industrial Chemistry, 7, 53−70. DOI: 10.1007/s40090-015-0061-9
  8. Tarmizi, T., Mikha, M.C., Muhammad, S., Nurlisa, H., Ferlinahayati, F., Aldes, L. (2019). Removal of Iron(II) Using Intercalated Ca/Al Layered Double Hydroxides with [α-SiW12O40]4−. Bulletin of Chemical Reaction Engineering and Catalysis, 14, 260−267. DOI: 10.9767/bcrec.14.2.2880.260-267
  9. Srinivasan, R. (2011). Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from DrinkingWater. Advances in Materials Science and Engineering, 2011, 872531. DOI: 10.1155/2011/872531
  10. Gu, S., Kang, X., Wang, L., Lichtfouse, E., Wang, C. (2019). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17, 629–654. DOI: 10.1007/s10311-018-0813-9
  11. Karimi, L., Salem, A. (2011). The role of bentonite particle size distribution on kinetic of cation exchange capacity. Journal of Industrial and Engineering Chemistry,17(1), 90−95. DOI: 10.1016/j.jiec.2010.12.002
  12. Bhattacharyya, K.G., Gupta, S.S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advances in Colloid and Interface Science, 140(2), 114−131. DOI: 10.1016/j.cis.2007.12.008
  13. Wang, X.H., Yang, L., Zhang, J.P., Wang, C.Y., Li, Q.Y. (2014) Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chemical Engineering Journal, 251, 404−412. DOI: 10.1016/j.cej.2014.04.089
  14. Rao, M., Ramesh, A., Rao, G., Seshaiah, K. (2005). Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceibapentandra hulls, Journal of Hazardous Materials, 129, 123−129. DOI: 10.1016/j.jhazmat.2005.08.018
  15. Baker, H., Massadeh, A., Younes, H. (2008). Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods. Environmental Monitoring and Assessment, 157, 319−330. DOI: 10.1007/s10661-008-0537-6
  16. Mishra, P.C., Patel, R.K. (2009). Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168, 319−325. DOI: 10.1016/j.jhazmat.2009.02.026
  17. Aytas, S., Yurtlu, M., Donat, R. (2009). Adsorption characteristic of U(VI) ion onto thermally activated bentonite. Journal of Hazardous Materials, 172, 667−674. DOI: 10.1016/j.jhazmat.2009.07.049
  18. Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Sapag, K., Garg, V.K., Lago, R.M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 22, 169−177. DOI: 10.1016/S0169-1317(02)00156-4
  19. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar. Advances in Chemical Engineering and Science, 24, 1−39. DOI: 10.4236/jamp.2019.71001
  20. Ho, Y.S., McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451−465. DOI: 10.1016/S0032-9592(98)00112-5
  21. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the Chemical Society, 38, 2221−2295. DOI: 10.1021/ja02268a002
  22. Freundlich, H., Umber, M.F. (1906). Die Adsorption in lasugen. Journal of Physical Chemistry, 57, 385−470. DOI: 10.12691/ijebb-5-2-1
  23. Dubinin, M.M., Zaverina, E.D., Radushkevich, L.V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Journal of Physical Chemistry, 21, 1351−1362 . DOI: 10.4236/oalib.1103363
  24. Sdiri, A., Higashi, T., Hattab, T., Jamoussic, F., Tasea, N. (2011). Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal, 172, 37−46. DOI: 10.1016/j.cej.2011.05.015
  25. Eloussaief, M., Jarraya, I., Benzina, M. (2009). Adsorption of copper ions on two clays from Tunisia: pH and temperature effects. Applied Clay Science, 46, 409−413. DOI: 10.1016/j.clay.2009.10.008
  26. Watanabe, T. (1981). Identification of Illite/Montmorillonite Interstratifications bay X-ray Powder Diffraction. Journal of Mineral Society of Japan, Special Issue, 97−114. DOI: 10.2465/gkk1952.15.Special_32
  27. Felhi, M., Tlili, A., Gaied, M.E., Montacer, M. (2008). Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Applied Clay Science, 39, 208−217. DOI: 10.1016/j.clay.2007.06.004
  28. Al-Asheh, S., Banat, F., Al-Rousan, D. (2002). Adsorption of copper. zinc and nickel ions from single and binary metal ion mixtures on to chicken feathers. Adsorption Science and Technology, 20, 849−864. DOI: 10.26717/BJSTR.2017.01.000558
  29. Samake, D. (2008). Traitement des eaux usées de tannerie à l’aide de matériaux à base d’argile. Ph.D. Thesis. University of Joseph Fourier, Grenoble. France. p. 167
  30. Saltalı, K., Sarı, A., Aydın, M. (2007). Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. Journal of Hazardous Materials, 141, 258–263. DOI: 10.1016/j.jhazmat.2006.06.124
  31. Pelletier, M., Michot, L.J., Barrès, O., Humbert, B. (1999). Influence of KBr conditioning on the infrared hydroxyl-stretching region of saponites. Journal of Clay Minerals, 34, 439−445. DOI: 10.1180/000985599546343
  32. Gionis, V., Kacandes, G.D., Kastritis, I.D., Chryssikos, G.D. (2006). On the structure of the palygorskite by mid- and near-infrared spectroscopy. American Mineralogist, 91, 1125−1133. DOI: 10.2138/am.2006.2023
  33. Gionis, V., Kacandes, G.D., Kastritis, I.D., Chryssikos, G.D. (2007). Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite. Clays and Clay Minerals, 55, 543-553. DOI: 10.1346/CCMN.2007.0550601
  34. Madejová, J. (2003). FT-IR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 1−10. DOI: 10.1016/S0924-2031(02)00065-6
  35. Petit, S., Robert, J.L., Decarreau, A., Besson, G., Grauby, O., Marton, F. (1995). Rapport des methods spectroscopiques à la caractérisation des phyllosilicates 2:1 Contribution of spectroscopic methods to 2:1 clay characterization. Bulletin des centres de recherches exploration-production Elf-Aquitaine, 19, 119−147. DOI: 10.3406/argil.1969.1105
  36. Sysa, L.V., Stepova, K.V., Petrova, M.A., Kontsur A.Z. (2019). Microwave-treated bentonite for removal of lead from wastewater, Voprosy khimii i khimicheskoi tekhnologii, 5, 126-134. DOI: 10.32434/0321-4095-2019-126-5-126-134
  37. Dafalla, M., Al-Mahbashi, A., Al-Shamrani, M. (2018). Trends of Moisture and Electrical Conductivity in Clay Liners. Geofluids, 2018, 8391830. DOI: 10.1155/2018/8391830
  38. Ho, Y.S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochem, 34, 451−465. DOI: 10.1016/S0032-9592(98)00112-5
  39. Koffi, L.K., Claire, P., Jean-Pierre, B., Agnès, S., Alain, J., Patrick, M., Philippe, A. (2007). Surface properties of kaolin and illite suspensions in concentrated calcium hydroxide medium. Journal of Colloid and Interface Science, 307, 101−108. DOI: 10.1016/j.jcis.2006.10.085
  40. Arib, A., Sarhiri, A., Moussa, R., Remmal, T., Gomina, M.C.R. (2007). Caractéristiques structurales et mécaniques de céramiques à base d'argile. Comptes Rendus Chimie, 10, 502-510. DOI: 10.1016/j.crci.2006.12.009
  41. Rouff, A.A., Elzinga, E.J., Reeder, R.J., Fisher, N.S. (2006). The effect of aging and pH on Pb(II) sorption processes at the calcite–water interface. Environmental Science and Technology, 40, 1792−1798. DOI: 10.1021/es051523f
  42. Giles, C.H., Mac Ewan, T.H., Nakhwa, S.N., Smith, D. (1960). Studies in adsorption. Part XI. A. system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of Solids. Journal of the Chemical Society, 1960, 3973−399. DOI: 10.1039/JR9600003973
  43. Sari, A., Tuzen, M., Citak, D., Soylak, M. (2007). Equilibrium.kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 149, 283−291. DOI: 10.1016/j.jhazmat.2007.03.078
  44. Onyango, M.S., Kojima, Y., Aoyi, O., Bernardo, E.C., Matsuda, H. (2004). Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. Journal of Colloid and Interface Science, 279, 341−350. DOI: 10.1016/j.jcis.2004.06.038
  45. Khalifa, A.Z., Özlem, C., Pontikes,Y., Heath, A., Patureau, P., Bernal, S.A., Marshc, A.T.M. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132, 106050. DOI: 10.1016/j.cemconres.2020.106050
  46. Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.R., Naidu, R. (2010). Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution: isothermal studies. Journal of Colloid and Interface Science, 350 295−304. DOI: 10.1016/j.jcis.2010.06.030
  47. Bhattacharyya, K.G., Gupta, S.S. (2006). Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clay. Colloids and Surfaces A, 277, 191−200. DOI: 10.1021/ie061475n
  48. Chaari, I., Fakhfakh, E., Chakroun, S., Bouzid, J., Boujelben, N., Feki, M., Rocha, F., Jamoussi, F. (2008). Lead removal from aqueous solutions by a Tunisian smectitic clay. Journal of Hazardous Materials, 156, 545−551. DOI: 10.11648/j.css.20170204.12
  49. Eloussaief, M., Benzina, M. (2010). Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions. Journal of Hazardous Materials, 178, 753−757. DOI: 10.1016/j.jhazmat.2010.02.004
  50. Kaya, A., Hakan Ören, A. (2005). Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, 125, 183−189. DOI: 10.1016/j.jhazmat.2005.05.027
  51. Oruh, S.C. (2008). The removal of zinc ions by natural and conditioned clinoptilolites, Desalination. Progress and Sustainable Energy, 225, 41−57. DOI: 10.1002/ep.12260
  52. Ulmanu, M., Mara˜nón, E., Fernández, Y., Castrillón, L., Anger, I., Dumitriu, D. (2003). Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air and Soil Pollution, 142, 357−373. DOI: 10.1002/ep.12583
  53. Murray, H.H. (2007). Applied Clay Mineralogy: Occurrences. Processing and Application of Kaolins-Bentonites-Palygorskite-Sepiolite and Common Clays, first edition., UK: Elsevier Science Ltd. p.189.

Last update: 2021-01-17 01:57:35

No citation recorded.

Last update: 2021-01-17 01:57:35

No citation recorded.