Synthesis, Structural Characterization, and Catalytic Property of A Zn(II) Complex with 5-Bromosalicylaldehyde Ligand

Xi Shi Tai  -  College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061,, China
Peng Fei Li  -  College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266061,, China
Xin Wang  -  Department of Chemistry, Qinghai Normal University, Xining 810008,, China
*Li Li Liu  -  College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061,, China
Received: 25 Dec 2016; Revised: 10 Mar 2017; Accepted: 10 Mar 2017; Published: 1 Dec 2017; Available online: 27 Oct 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The study on catalytic activity of complex materials has been one of the hot spots in coordination  chemistry. In order to extensively study the catalytic activity of complexes, a new six-coordination Zn(II) complex material, [ZnL2(H2O)2] (C1) (HL = 5-bromosalicylaldehyde), has been prepared with 5-bromosalicylaldehyde, NaOH, and Zn(CH3COO)2·2H2O as raw materials. The structure of C1 was determined by elemental analysis, IR spectra, and single crystal X-ray diffraction. The Zn(II) complex shows a moderate catalytic activity for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene with the benzaldehyde conversion reached 54.6 %. Furthermore, the Zn(II) complex catalyst exhibited 54.8 %, 53.8 %, and 54.4 % conversions of benzaldehyde in the second, third, and fourth cycles, respectively.  In addition, the Zn(II) complex features a selectivity of 100 % to the     product of propargylamine for the A3 coupling reaction. Copyright © 2017 BCREC Group. All rights reserved

Received: 25th December 2016; Revised: 10th March 2017; Accepted: 10th March 2017; Available online: 273th October 2017; Published regularly: December 2017

How to Cite: Tai, X.S., Li, P.F., Wang, X., Liu, L.L. (2017). Synthesis, Structural Characterization, and Catalytic Property of A Zn(II) Complex with 5-Bromosalicylaldehyde Ligand. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 364-369 (doi:10.9767/bcrec.12.3.876.364-369)


Keywords: Zn(II) complex material; Synthesis; Structural characterization; Catalytic property; Ligand

Article Metrics:

  1. Borah, S.J., Das, D.K. (2016). Modified Monotmorillonite Clay Stabilized Silver Nanoparticles: An Active Heterogeneous Catalytic System for the Synthesis of Propargylamines. Catalysis Letters, 146: 656-665.
  2. Peshkov, V.A., Pereshivko, O.P., EV, V.D.E. (2012). A Walk Around the A3-Coupling. Chemical Society Reviews, 41: 3790-3807.
  3. Layek, K., Chakravarti, R., Kantam, L.M., Maheswaran, H., Viru, A. (2011). Nanocrystalline Magnesium Oxide Stabilized Gold Nanoparticles: An Advanced Nanotechnology Based Recyclable Heterogeneous Catalyst Platform for the One-pot Synthesis of Propargylamines. Green Chemistry, 13: 2878-2887.
  4. Liu, L.L., Tai, X.S., Zhang, N.N., Meng, Q.G., Xin, C.L. (2016). Supported Au/MIL-53(Al): A Reusable Green Solid Catalyst for the Three-component Coupling Reaction of Aldehyde, Alkyne, and Amine. Reaction Kinetics, Mechanisms, and Catalysis, 119: 335-348.
  5. Liu, L.L., Tai, X.S., Yu, G.L., Guo, H.M., Meng, Q.G. (2016). Gold and Silver Nanoparticles Supported on Metal-organic Frameworks: a Highly Active Catalyst for Three-component Coupling Reaction. Chemical Research in Chinese Universities, 32: 443-450.
  6. Sharma, R., Sharma, S., Gaba, G. (2014). A Silica Nanospheres Supported Diazafluorene Iron Complex: An Efficient and Versatile Nanocatalyst for the Synthesis of Propargylamines from Terminal alkynes, Dihalomethane and Amines. RSC Advances, 4: 49198-49211.
  7. Murai, T., Mutoh, Y., Ohta, Y., Murakami. M. (2004). Synthesis of Tertiary Propargylamines by Sequential Reactions of in Situ Generated Thioiminium Salts with Organolithium and –Magnesium Reagents. Journal of the American Chemical Society, 126: 5968-5969.
  8. Periasamy, M., Reddy, P.O., Edukondalu, A., Dalai, M., Alakonda, L.M., Udaykumar, B. (2014). Zinc Salt Promoted Diastereoselective Synthesis of Chiral Propargylamines Using Chiral Piperazines and their Enantioselective Conversion into Chiral Allenes. European Journal of Organic Chemistry, 2014: 6067-6076.
  9. Gholinejad, M., Saadati, F., Shaybanizadeh, S., Pullithadathil, B. (2016). Copper Nanoparticles Supported on Starch Micro Particles as a Degradable Heterogeneous Catalyst for Three-component Coupling Synthesis of Propargylamines. RSC Advances, 6: 4983-4991.
  10. Samai, S., Nandi, G.C., Singh, M. (2010). An Efficient and Facile One-pot Synthesis of Propargylamines by Three-component Coupling of Aldehydes, Amines, and Alkynes via C–H Activation Catalyzed by NiCl2. Tetrahedron Letters, 51: 5555-5558.
  11. Fukuzumi, S., Kojim, T., Lee, Y.M., Nama, W. (2017). High-valent Metal-oxo Complexes Generated in Catalytic Oxidation Reactions Using Water As an Oxygen Source. Coordination Chemistry Reviews, 333: 44-56.
  12. Liu, L.L., Tai, X.S., Liu, M.F., Li, Y.F., Feng, Y.M., Sun, X.R. (2015). Supported Au/MOF-5: A Highly Active Catalyst for Three-component Coupling Reactions. CIESC Journal, 66(5): 1738-1747.
  13. Andrea, V., Salvatore, B., Cristina, T., Walter, B., Marino, B., Claudia, G. (2016). Dinuclear Di(N-heterocyclic carb­ene) Iridium(III) Complexes as Catalysts in Transfer Hydrogenation. European Journal of Inorganic Chemistry, 2016: 247-251.
  14. Miriam, N.G., Kohsuke, M., Ai, N., Yasutaka, K., Hiromi, Y. (2016). Highly Efficient Ru/carbon Catalysts Prepared by Pyrolysis of Supported Ru Complex Towards the Hydrogen Production from Ammonia Borane. Applied Catalysis A: General, 527: 45-52.
  15. Yang, D., Odoh, S.O., Borycz, J., Wang, T.C., Farha, O.K., Hupp, J.T., Cramer, C.J., Gagliardi, L., Gates, B.C. (2016). Tuning Zr6 Metal-Organic Framework (MOF) Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts. ACS Catalysis, 6: 235-247.
  16. Thangavel, S., Boopathi, S., Mahadevaiah, N., Kolandaivel, P., Pansuriya, P.B., Friedrich, H.B. (2016). Catalytic Oxidation of Primary aromatic alcohols Using Half Sandwich Ir(III), Rh(III) and Ru(II) Complexes: A Practical and Theoretical Study. Journal of Molecular Catalysis A: Chemical, 423: 160-171.
  17. Tai, X.S., Liu, L.L., Yin, J. (2014). Synthesis, Crystal Structure of Tetra-Nuclear Macrocyclic Cu(II) Complex Material and Its Application as Catalysts for A3 Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 24(6): 1014-1020.
  18. Tai, X.S., Liu, L.L. (2015). Synthesis, Crystal Structure of a Mg(II) Complex Materials and Its Application as Catalysts for A3 Coupling Reaction. The Open Materials Science Journal, 9: 1-5.
  19. Sheldrick, G.M. (1997). SHELXL-97, Program for Crystal Structure Solution. University of Göttingen: Göttingen, Germany.
  20. Sheldrick, G.M. (1997). SHELXTL-97, Program for Crystal Structure Refinement. University of Göttingen: Göttingen, Germany.
  21. Nakamoto, K. (1978). Infrared and Ramen Spectra of Inorganic and Coordination Compounds. 3rd ed.; John Wiley and Sons: New York, NY, USA, Volume 1, pp. 359-368.
  22. Tai, X.S., Wang, X., You, H.Y. (2016). Synthesis, Crystal Structure and Antitumor Activity of a New Zn(II) Complex Based on N-Acetyl-phenylalanine and 1,10-Phenanthroline. Chinese Journal of Structural Chemistry, 35: 586-590.

No citation recorded.