skip to main content

Effect of Immobilization Methods on the Production of Polyethylene-cellulose Biocomposites via Ethylene Polymerization with Metallocene/MAO Catalyst

1Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2Research Center of Research Center of Natural Materials and Products, Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Muang, Nakhon Pathom 73000, Thailand

Received: 19 Aug 2020; Revised: 2 Oct 2020; Accepted: 3 Oct 2020; Available online: 3 Oct 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Polyethylene-cellulose biocomposites were synthesized here via the ethylene polymerization with metallocene as a catalyst along with methylaluminoxane (MAO) as a cocatalyst. The immobilization method in which the catalyst or cocatalyst is fixed onto the catalytic filler (cellulose) can be classified into 3 methods according to the active components fixed onto the filler surface: 1) only metallocene catalyst (Cellulose/Zr), 2) only MAO cocatalyst (Cellulose/MAO) and 3) mixture of metallocene and MAO (Cellulose/(Zr+MAO)). It was found that the different immobilization methods or different fillers altered the properties of the obtained composites and also the catalytic activity of the polymerization systems. It was found that Cellulose/MAO provided the highest catalytic activity among all fillers due to a crown-alumoxane complex, which caused the heterogeneous system with this filler behaved similarly to the homogeneous system. The different fillers also produced the biocomposites with some different properties such as crystallinity which Cellulose/Zr provided the highest crystallinity compared with other fillers as observed by a thermal gravimetric analysis-differential scanning calorimetry (TGA-DSC). Nevertheless, the main crystal structure indicated to the typical polyethylene was still observed for all obtained biocomposites with different fillers as observed by an X-ray diffractometer (XRD). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Polyethylene; Metallocene; Cellulose; Biocomposite
Funding: Chulalongkorn University

Article Metrics:

  1. Niyomthai, T., Jongsomjit, B., Praserthdam, P. (2018). Impact of AlCl3 and FeCl2 addition on catalytic behaviors of TiCl4/MgCl2/THF catalysts for ethylene polymerization and ethylene/1-hexene copolymerization. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 393-404. DOI: 10.9767/bcrec.13.3.2116.393-404
  2. Chen, Y., Zou, H., Liang, M., Liu, P. (2013). Rheological, thermal, and morphological properties of low‐density polyethylene/ultra‐high‐molecular‐weight polyethylene and linear low‐density polyethylene/ultra‐high‐molecular‐weight polyethylene blends. Journal of applied polymer science, 129(3), 945-953. DOI: 10.1016/j.aiepr.2018.08.004
  3. Ezema, I.C., Menon, A.R., Obayi, C.S., Omah, A.D. (2014). Effect of surface treatment and fiber orientation on the tensile and morphological properties of banana stem fiber reinforced natural rubber composite. Journal of Minerals and Materials Characterization and Engineering, 2, 216-222. DOI: 10.4236/jmmce.2014.23026
  4. Ruksakulpiwat, C., Wanasut, W., Singkum, A., Yupaporn, R. (2013). Cogon grass fiber-epoxidized natural rubber composites. Advanced Materials Research, 747, 375-378. DOI: 10.4028/www.scientific.net/AMR.747.375
  5. Binhussain, M.A., El-Tonsy, M.M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47, 1431-1435. DOI: 10.1016/j.conbuildmat.2013.06.031
  6. Bajwa, S.G., Bajwa, D.S., Holt, G., Coffelt, T., Nakayama, F. (2011). Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers. Industrial Crops and Products, 33(3), 747-755. DOI: 10.1016/j.indcrop.2011.01.017
  7. Jinitha, T.V., Sreejith, M.P., Balan, A.K., Purushothaman, E. (2016). Mechanical and transport properties of permanganate treated coconut shell powder – natural rubber composites. Journal of Chemical and Pharmaceutical Sciences, 1(1), 6-11
  8. Thanarattanasap, N., Tumawong, P., Sinsawat, T., Chaichana, E., Jongsomjit, B. (2019). Polyethylene/Bacterial-Cellulose Biocomposite Synthesized via In Situ Polymerization with Zirconocene/MMAO Catalyst. Engineering Journal, 23, 15-28. DOI: 10.4186/ej.2019.23.3.15
  9. Suttivutnarubet, C., Jaturapiree, A., Chaichana, E., Praserthdam, P., Jongsomjit, B. (2016). Synthesis of polyethylene/coir dust hybrid filler via in situ polymerization with zirconocene/MAO catalyst for use in natural rubber biocomposites. Iranian Polymer Journal, 25(10), 841-848. DOI: 10.1007/s13726-016-0478-9
  10. Hlatky, G.G. (2000). Heterogeneous Single-Site Catalysts for Olefin Polymerization. Chemical Reviews, 100(4), 1347-1376. DOI: 10.1021/cr9902401
  11. Chaichana, E., Shiono, T., Praserthdam, P., Jongsomjit, B. (2012). A Comparative Study of In Situ and Ex Situ Impregnation for LLDPE/Silica Composites Production. Engineering Journal, 16(1), 27-36. DOI: 10.4186/ej.2012.16.1.27
  12. Bochmann, M. (2004). Kinetic and mechanistic aspects of metallocene polymerisation catalysts. Journal of Organometallic Chemistry, 689(24), 3982-3998. DOI: 10.1016/j.jorganchem.2004.07.006
  13. Pédeutour, J.-N., Radhakrishnan, K., Cramail, H., Deffieux, A. (2001). Reactivity of Metallocene Catalysts for Olefin Polymerization: Influence of Activator Nature and Structure. Macromolecular Rapid Communications, 22(14), 1095-1123. DOI: 10.1002/1521-3927(20011001)22:14<1095::aid-marc1095>3.0.co;2-r
  14. Brant, P. (2003). Processes for the preparation polyolefin resins using supported ionic catalysts. WO/2001/046273, United States, ExxonMobil Chemical Patents Inc. (Houston, TX)
  15. Zapata, P.A., Quijada, R., Lieberwirth, I., Benavente, R., (2011) Polyethylene nanocomposites obtained by in situ polymerization via a metallocene catalyst supported on silica nanospheres. Macromolecular Reaction Engineering, 5(7‐8), 294-302. DOI: 10.1002/mren.201100013
  16. Mubarak, Y.A., Abdulsamad, R.T. (2019). Effects of microcrystalline cellulose on the mechanical properties of low-density polyethylene composites. Journal of Thermoplastic Composite Materials, 32(3), 297-311. DOI: 10.1177/0892705717753056
  17. Paredes, B., van Grieken, R., Carrero, A., Lopez-Moya, E. (2016). Bimodal polypropylene through binary metallocene catalytic systems: Comparison between hybrid and mixed heterogeneous catalysts. Journal of Polymer Research, 23(7), 135. DOI: 10.1007/s10965-016-1033-2
  18. Harlan, C.J., Haas, S.C., Luo, L., Rix, F.C., Ye, X. (2019), Toluene Free Silica Supported Single-Site Metallocene Catalysts from In-situ Supported Alumoxane Formation in Aliphatic Solvents. WO/2019/089145, United States, ExxonMobil Chemical Patents Inc. (Houston, TX)
  19. Pipatpratanporn, P., Jongsomjit, B., Praserthdam, P. (2007). Impact of process variables on properties of polypropylene derived from the supported ziegler-natta and metallocene catalysts. Iranian Polymer Journal, 16(2), 123-131
  20. Jamnongphol, S., Jaturapiree, A., Sukrat, K., Saowapark, T., Chaichana, E., Jongsomjit, B. (2020). Rice Husk-Derived Silica as a Support for Zirconocene/MMAO Catalyst in Ethylene Polymerization. Waste and Biomass Valorization, 11(2), 769-779. DOI: 10.1007/s12649-018-0423-6
  21. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(1), 10. DOI: 10.1186/1754-6834-3-10
  22. Terinte, N., Ibbett, R., Schuster, K.C. (2011). Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques, Lenzinger Berichte, 89(1), 118
  23. Ciardelli, F., Altomare, A., Michelotti, M. (1998). From homogeneous to supported metallocene catalysts. Catalysis Today, 41(1), 149-157. DOI: 10.1016/S0920-5861(98)00045-5
  24. Chien, J.C.W., Wang, B.P. (1988). Metallocene–methylaluminoxane catalysts for olefin polymerization. I. Trimethylaluminum as coactivator. Journal of Polymer Science Part A: Polymer Chemistry, 26(11), 3089-3102. DOI: 10.1002/pola.1988.080261117
  25. Burkhardt, T.J., Brandley, W.B. (1997). Method for preparing metallocene catalyst systems. US5635437A, United States, Hoechst AG
  26. Velthoen, M.E.Z. Boereboom, J.M., Bulo, R.E. Weckhuysen, B.M. (2019). Insights into the activation of silica-supported metallocene olefin polymerization catalysts by methylaluminoxane. Catalysis Today, 334, 223-230. DOI: 10.1016/j.cattod.2018.11.019
  27. Shamiri, A., Chakrabarti, M.H., Jahan, S., Hussain, M.A., Kaminsky, W., Aravind, P.V., Yehye, W.A. (2014). The influence of Ziegler-Natta and metallocene catalysts on polyolefin structure, properties, and processing ability. Materials, 7(7), 5069-5108. DOI: 10.3390/ma7075069
  28. Kaminsky, W., Renner, F. (1993). High Melting Polypropenes by Silica-Supported Zirconocene Catalysts. Die Makromolekulare Chemie, Rapid Communications, 14, 239-243. DOI: 10.1002/marc.1993.030140404
  29. Ribeiro, M.R., Deffieux, A., Portela, M.F. (1997). Supported metallocene complexes for ethylene and propylene polymerizations: preparation and activity. Industrial & engineering chemistry research, 36(4), 1224-1237. DOI: 10.1021/ie960475s
  30. Wu, W., Jiang, Y., Wu, H., Lv, C., Luo, M., Ning, Y., Mao, G. (2013). Recent progress in immobilization of late-transition-metal complexes with diimine ligands for olefin polymerization. Chinese Science Bulletin, 58(15), 1741-1750. DOI: 10.1007/s11434-013-5748-8
  31. Ben, H., Chen, X., Han, G., Shao, Y., Jiang, W., Pu, Y., Ragauskas, A.J. (2018). Characterization of Whole Biomasses in Pyridine Based Ionic Liquid at Low Temperature by 31P NMR: An Approach to Quantitatively Measure Hydroxyl Groups in Biomass As Their Original Structures. Frontiers in Energy Research, 6, 13. DOI: 10.3389/fenrg.2018.00013
  32. Ek, S., Root, A., Peussa, M., Niinistö, L. (2001). Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochimica Acta, 379(1), 201-212. DOI: 10.1016/S0040-6031(01)00618-9
  33. Collins, S., Kelly, W.M., Holden, D.A. (1992). Polymerization of propylene using supported, chiral, ansa-metallocene catalysts: production of polypropylene with narrow molecular weight distributions. Macromolecules, 25(6), 1780-1785. DOI: 10.1021/ma00032a025
  34. Chaichana, E., Pathomsap, S., Mekasuwandumrong, O., Panpranot, J., Shotipruk, A., Jongsomjit, B. (2012). LLDPE/TiO2 nanocomposites produced from different crystallite sizes of TiO2 via in situ polymerization. Chinese Science Bulletin, 57(17), 2177-2184. DOI: 10.1007/s11434-012-5021-6
  35. Desharun, C., Jongsomjit, B., Praserthdam, P. (2008). Study of LLDPE/alumina nanocomposites synthesized by in situ polymerization with zirconocene/d-MMAO catalyst. Catalysis Communications, 9(4), 522-528. DOI: 10.1016/j.catcom.2007.08.001
  36. Kuo, S.-W., Huang, W.-J., Huang, S.-B., Kao, H.-C., Chang, F.-C. (2003). Syntheses and characterizations of in situ blended metallocence polyethylene/clay nanocomposites. Polymer, 44(25), 7709-7719. DOI: 10.1016/j.polymer.2003.10.007
  37. Thanarattanasap, N., Tumawong, P., Sinsawat, T., Chaichana, E., Jongsomjit, B. (2019). Polyethylene/Bacterial-Cellulose Biocomposite Synthesized via In Situ Polymerization with Zirconocene/MMAO Catalyst. Engineering Journal, 23(3), 15-28. DOI: 10.4186/ej.2019.23.3.15
  38. Morillo, A., Parada, A., Ibarra, D., Passaglia, E., Arévalo, J., Rajmankina, T. (2007). Ethylene polymerization using metallocenes supported on MgCl2/SiCl4−n (n-C6H13O)n. Designed Monomers and Polymers, 10(6), 507-516. DOI: 10.1163/156855507782401187
  39. Panupakorn, P., Chaichana, E., Praserthdam, P., Jongsomjit, B. (2013). Polyethylene/Clay Nanocomposites Produced by In Situ Polymerization with Zirconocene/MAO Catalyst. Journal of Nanomaterials, 2013, 154874. DOI: 10.1155/2013/154874

Last update:

No citation recorded.

Last update:

No citation recorded.