Production of Acetaldehyde via Oxidative Dehydrogenation of Ethanol over AgLi/SiO2 Catalysts

Narawich Mukda  -  Department of Chemical Engineering, Chulalongkorn University, Thailand
Chaowat Autthanit orcid scopus  -  Department of Chemical Engineering, Chulalongkorn University, Thailand
Piyasan Praserthdam scopus  -  Department of Chemical Engineering, Chulalongkorn University, Thailand
*Bunjerd Jongsomjit scopus  -  Department of Chemical Engineering, Chulalongkorn University, Thailand
Received: 15 Aug 2020; Revised: 17 Sep 2020; Accepted: 18 Sep 2020; Published: 28 Dec 2020; Available online: 19 Sep 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Three AgLi/SiO2 catalysts containing different types of silica supports [small particle size (SPS), medium particle size (MPS) and large particle size (LPS)] were prepared by incipient wetness co-impregnation techniques and tested in oxidative dehydrogenation of ethanol into acetaldehyde. The catalysts were characterized and evaluated by various characterization techniques (e.g. XRD, N2 physisorption, SEM-EDX, UV-Visible spectroscopy, H2-TPR, and CO2-TPD). This study reveals that the catalyst with the best performance is AgLi/SiO2-LPS with a yield in acetaldehyde of 76.8% at 300 °C. The results obtained with the tested catalysts are discussed, and the reasons of performance improvement caused by the presence of the dispersion of active components, the interaction between active components and silica supports, the textural properties of catalysts and reducibility, are raised. Besides, the cooperation of redox properties (Agnδ+  cluster and Ag0) and weak basic density played a pivotal role in promoting the formation of acetaldehyde from ethanol oxidative dehydrogenation. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Oxidative dehydrogenation of ethanol; Silver-lithium; Silica; Acetaldehyde
Funding: Chulalongkorn University, CAT-REAC industrial project

Article Metrics:

  1. Sun, J., Wang, Y. (2014). Recent advances in catalytic conversion of ethanol to chemicals, ACS Catal., 4, 1078-1090
  2. Angelici, C., Weckhuysen, B.M., Bruijnincx, P. (2013). Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals, ChemSusChem., 6, 1595-1614
  3. Shan, J., Liu, J., Li, M., Lustig, S., Lee, S., Flytzani-Stephanopoulos, M. (2018). NiCu single atom alloys catalyze the CH bond activation in the selective non-oxidative ethanol dehydrogenation reaction, Appl. Catal. B., 226, 534-543
  4. Shan, J., Janvelyan, N., Li, H., Liu, J., Egle, T.M., Ye, J., Biener, M.M., Biener, J., Friend, C.M., Stephanopoulos, M.F. (2017). Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys, Appl. Catal. B., 205, 541-550
  5. Rodriguez-Gomez, A., Holgado, J. P., Caballero, A. (2017). Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde, ACS Catal., 7, 5243-5247
  6. Zeng, G., Chen, T., He, L., Pinnau, I., Lai, Z., Huang, K.W. (2012). A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd–Ag membrane reactor, Chem. Eur. J., 18, 15940-15943
  7. Otsuka, K., Uragami, Y., Hatano, M. (1992). The partial oxidation of ethane to acetaldehyde, Catal. Today, 13, 667-672
  8. Ponomarev, D.A., Shevchenko, S.M. (2007). Hydration of acetylene: A 125th anniversary, J. Chem. Educ., 84, 1725-1726
  9. Fujimoto, K., Takeda, H., Kunugi, T. (1974). Catalytic oxidation of ethylene to acetaldehyde. Palladium chloride-active charcoal catalyst, Ind. Eng. Chem. Prod. Res. Dev., 13, 237-242
  10. Caro, C., Thirunavukkarasu, K., Anilkumar, M., Shiju, N., Rothenberg, G. (2012). Selective Autooxidation of Ethanol over Titania‐Supported Molybdenum Oxide Catalysts: Structure and Reactivity, Adv. Synth. Catal., 354, 1327-1336
  11. Gomez, M.F., Arrua, L.A., Abello, M.C. (1997). Kinetic study of partial oxidation of ethanol over V-MgO catalyst, Ind. Eng. Chem. Res., 36, 3468-3472
  12. Tu, Y.-J., Chen, Y.-W. (2001). Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol, Ind. Eng. Chem. Res., 40, 5889-5893
  13. Quaranta, N., Soria, J., Corberan, V.C., Fierro, J. (1997). Selective Oxidation of Ethanol to Acetaldehyde on V2O5/TiO2/SiO2 Catalysts, J. Catal., 171, 1-13
  14. Glinrun, T., Mekasuwandumrong, O., Panpranot, J., Chaisuk, C., Praserthdam, P. (2010). Improvement of propane oxidation activity over Pt/Al2O3 by the use of MIXED γ-and χ-Al2O3 supports, React. Kinet. Mech. Catal., 100, 441-448
  15. Meephoka, C., Chaisuk, C., Samparnpiboon, P., Praserthdam, P. (2008). Effect of phase composition between nano γ-and χ- Al2O3 on Pt/Al2O3 catalyst in CO oxidation, Catal. Commun., 9, 546-550
  16. Sushkevich, V.L., Ivanova, I.I., Ordomsky, V.V., Taarning, E. (2014). Design of a Metal‐Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol, ChemSusChem, 7, 2527-2536
  17. Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., Vodyankina, O. (2019). Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2 interfacial interaction, Catal. Today, 333, 2-9
  18. Magaev, O.V., Knyazev, A.S., Vodyankina, O.V., Mamontov, G. (2013). Influence of phosphate addition on activity of Ag and Cu catalysts for partial oxidation of alcohols, Catal. Today., 203, 122-126
  19. Autthanit, C., Chatkaew, W., Praserthdam, P., Jongsomjit, B. (2020). Effect of different phase composition in titania on catalytic behaviors of AgLi/TiO2 catalysts via ethanol dehydrogenation. J. Environ. Chem. Eng., 8, 103547
  20. Janlamool, J., Jongsomjit, B. (2015). Oxidative dehydrogenation of ethanol over AgLi–Al2O3 catalysts containing different phases of alumina, Catal. Commun., 70, 49-52
  21. Krutpijit, C., Tian, W., Jongsomjit, B., Pjontek, D., Herrera, J.E. (2020). Lithium promotion in ethanol oxidative dehydrogenation over Al-modified Ag/Montmorillonite clays, Mol. Catal., 483, 110717
  22. Kerdnoi, P., Autthanit, C., Chitpong, N., Jongsomjit, B. (2020). Catalytic Dehydration of Ethanol over W/TiO2 Catalysts Having Different Phases of Titania Support, Bull. Chem. React. Eng. Catal., 15, 96-103
  23. Kamsuwan, T., Praserthdam, P., Jongsomjit, B. (2020). Tuning of catalytic behaviors in ethanol dehydration with oxygen cofeeding over Pd-HBZ catalyst for ethylene production at low temperature, Catal. Commun., 137, 105941
  24. Huang, X., Men, Y., Wang, J., An, W., Wang, Y. (2017). Highly active and selective binary MgO–SiO2 catalysts for the production of 1, 3-butadiene from ethanol, Catal. Sci. Technol., 7, 168-180
  25. Akhade, S.A., Winkelman, A., Dagle, V.L., Kovarik, L., Yuk, S.F., Lee, M.-S., Zhang, J., Padmaperuma, A.B., Dagle, R.A., Glezakou, V.-A., Wang, Y., Rousseau, R. (2020). Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts, J. Catal., 386, 30-38
  26. Chanchuey, T., Autthanit, C., Jongsomjit, B. (2016). Effect of Mo-doped mesoporous Al-SSP catalysts for the catalytic dehydration of ethanol to ethylene, J. Chem., 2016, Article ID 9672408
  27. Mamontov, G., Grabchenko, M., Sobolev, V., Zaikovskii, V., Vodyankina, O. (2016). Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: role of Ag-CeO2 interface, Appl. Catal. A: Gen., 528, 161-167
  28. Fuchigami, K., Taguchi, Y., Tanaka, M. (2008). Synthesis of spherical silica particles by sol‐gel method and application, Polym. Adv. Technol., 19, 977-983
  29. Autthanit, C., Praserthdam, P., Jongsomjit, B. (2018). Oxidative and non-oxidative dehydrogenation of ethanol to acetaldehyde over different VOx/SBA-15 catalysts, J. Environ. Chem. Eng., 6, 6516-6529
  30. Zhang, G., Xu, Y., Xu, D., Wang, D., Xue, Y., Su, W. (2008). Pressure-induced crystallization of amorphous SiO2 with silicon–hydroxy group and the quick synthesis of coesite under lower temperature, High. Press. Res., 28, 641-650
  31. Wang, H., Chen, Z., Chen, D., Yu, Q., Yang, W., Zhou, J., Wu, S. (2019). Facile, template-free synthesis of macroporous SiO2 as catalyst support towards highly enhanced catalytic performance for soot combustion, Chem. Eng. J., 375, 121958
  32. Wu, J.C.-S., Chen, C.-H. (2004). A visible-light response vanadium-doped titania nanocatalyst by sol–gel method, J. Photochem. Photobiol. A., 163, 509-515
  33. Pestryakov, A.N., Davydov, A. (1995). Study of supported silver states by the method of electron spectroscopy of diffuse reflectance, J. Electron Spectrosc. Relat. Phenom., 74, 195-199
  34. Pestryakov, A.N., Davydov, A. (1994). Active electronic states of silver catalysts for methanol selective oxidation, Appl. Catal. A, 120, 7-15
  35. Pestryakov, A.N. (1996). Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 28, 239-244
  36. Pinna, F., Fantinel, T., Strukul, G., Benedetti, A., Pernicone, N. (1997). TPR and XRD study of ammonia synthesis catalysts, Appl. Catal., A, 149, 341-351
  37. Kim, Y.-C., Park, N.-C., Shin, J.-S., Lee, S. R., Lee, Y.J., Moon, D. (2003). Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts, Catal. Today., 87, 153-162
  38. Grabchenko, M., Mamontov, G., Zaikovskii, V., La Parola, V., Liotta, L., Vodyankina, O. (2018). Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2 interfacial interaction, Catal. Today, 333, 2-9
  39. Deng, X., Li, M., Zhang, J., Hu, X., Zheng, J., Zhang, N., Chen, B. (2017). Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation, Chem. Eng. J., 313, 544-555
  40. Aneggi, E., Llorca, J., de Leitenburg, C., Dolcetti, G., Trovarelli, A. (2009). Soot combustion over silver-supported catalysts. Appl. Catal., B, 91, 489-498
  41. Shimizu, K.-i., Kawachi, H., Satsuma, A. (2010). Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst, Appl. Catal., B, 96, 169-175
  42. Shi, R., Wang, F., Mu, X., Li, Y., Huang, X., Shen, W. (2009). MgO-supported Cu nanoparticles for efficient transfer dehydrogenation of primary aliphatic alcohols. Catal. Commun., 11, 306-309
  43. Zhang, X., Wan, H.-l., Weng, W.-z., Yi, X.-d. (2003). Effect of Ag promoter on redox properties and catalytic performance of Ag-Mo-PO catalysts for oxidative dehydrogenation of propane, Appl. Surf. Sci., 220, 117-124
  44. Bahruji, H., Bowker, M., Brookes, C., Davies, P.R., Wawata, I. (2013). The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts, Appl. Catal., A, 454, 66-73
  45. Pinthong, P., Praserthdam, P., Jongsomjit, B. (2020). Oxidative dehydrogenation of ethanol over Cu/Mg-Al catalyst derived from hydrotalcite: effect of ethanol concentration and reduction conditions, J. Zhejiang. Univ-Sc. A, 21, 218-228
  46. Zhan, N., Hu, Y., Li, H., Yu, D., Han, Y., Huang, H. (2010). Lanthanum–phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis, Catal. Commun., 11, 633-637
  47. Pestryakov, A.N., Davydov, A. (1994). Active electronic states of silver catalysts for methanol selective oxidation, Appl. Catal., A, 120, 7-15
  48. Burattin, P., Che, M., Louis, C. (1999). Metal particle size in Ni/SiO2 materials prepared by deposition−precipitation: Influence of the nature of the Ni (II) phase and of its interaction with the support, J. Phys. Chem. B, 103, 6171-6178
  49. Ye, G., Sun, Y., Guo, Z., Zhu, K., Liu, H., Zhou, X., Coppens, M.-O. (2018). Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane, Journal of Catalysis., 360, 152-159

Last update: 2021-05-10 02:07:38

No citation recorded.

Last update: 2021-05-10 02:07:38

No citation recorded.