Production of Acetaldehyde via Oxidative Dehydrogenation of Ethanol over AgLi/SiO2 Catalysts

License URL: http://creativecommons.org/licenses/by-sa/4.0

Three AgLi/SiO2 catalysts containing different types of silica supports [small particle size (SPS), medium particle size (MPS) and large particle size (LPS)] were prepared by incipient wetness co-impregnation techniques and tested in oxidative dehydrogenation of ethanol into acetaldehyde. The catalysts were characterized and evaluated by various characterization techniques (e.g. XRD, N2 physisorption, SEM-EDX, UV-Visible spectroscopy, H2-TPR, and CO2-TPD). This study reveals that the catalyst with the best performance is AgLi/SiO2-LPS with a yield in acetaldehyde of 76.8% at 300 °C. The results obtained with the tested catalysts are discussed, and the reasons of performance improvement caused by the presence of the dispersion of active components, the interaction between active components and silica supports, the textural properties of catalysts and reducibility, are raised. Besides, the cooperation of redox properties (Agnδ+ cluster and Ag0) and weak basic density played a pivotal role in promoting the formation of acetaldehyde from ethanol oxidative dehydrogenation. Copyright © 2020 BCREC Group. All rights reserved
Article Metrics:
- Sun, J., Wang, Y. (2014). Recent advances in catalytic conversion of ethanol to chemicals, ACS Catal., 4, 1078-1090.
- Angelici, C., Weckhuysen, B.M., Bruijnincx, P. (2013). Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals, ChemSusChem., 6, 1595-1614.
- Shan, J., Liu, J., Li, M., Lustig, S., Lee, S., Flytzani-Stephanopoulos, M. (2018). NiCu single atom alloys catalyze the CH bond activation in the selective non-oxidative ethanol dehydrogenation reaction, Appl. Catal. B., 226, 534-543.
- Shan, J., Janvelyan, N., Li, H., Liu, J., Egle, T.M., Ye, J., Biener, M.M., Biener, J., Friend, C.M., Stephanopoulos, M.F. (2017). Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys, Appl. Catal. B., 205, 541-550.
- Rodriguez-Gomez, A., Holgado, J. P., Caballero, A. (2017). Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde, ACS Catal., 7, 5243-5247.
- Zeng, G., Chen, T., He, L., Pinnau, I., Lai, Z., Huang, K.W. (2012). A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd–Ag membrane reactor, Chem. Eur. J., 18, 15940-15943.
- Otsuka, K., Uragami, Y., Hatano, M. (1992). The partial oxidation of ethane to acetaldehyde, Catal. Today, 13, 667-672.
- Ponomarev, D.A., Shevchenko, S.M. (2007). Hydration of acetylene: A 125th anniversary, J. Chem. Educ., 84, 1725-1726.
- Fujimoto, K., Takeda, H., Kunugi, T. (1974). Catalytic oxidation of ethylene to acetaldehyde. Palladium chloride-active charcoal catalyst, Ind. Eng. Chem. Prod. Res. Dev., 13, 237-242.
- Caro, C., Thirunavukkarasu, K., Anilkumar, M., Shiju, N., Rothenberg, G. (2012). Selective Autooxidation of Ethanol over Titania‐Supported Molybdenum Oxide Catalysts: Structure and Reactivity, Adv. Synth. Catal., 354, 1327-1336.
- Gomez, M.F., Arrua, L.A., Abello, M.C. (1997). Kinetic study of partial oxidation of ethanol over V-MgO catalyst, Ind. Eng. Chem. Res., 36, 3468-3472.
- Tu, Y.-J., Chen, Y.-W. (2001). Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol, Ind. Eng. Chem. Res., 40, 5889-5893.
- Quaranta, N., Soria, J., Corberan, V.C., Fierro, J. (1997). Selective Oxidation of Ethanol to Acetaldehyde on V2O5/TiO2/SiO2 Catalysts, J. Catal., 171, 1-13.
- Glinrun, T., Mekasuwandumrong, O., Panpranot, J., Chaisuk, C., Praserthdam, P. (2010). Improvement of propane oxidation activity over Pt/Al2O3 by the use of MIXED γ-and χ-Al2O3 supports, React. Kinet. Mech. Catal., 100, 441-448.
- Meephoka, C., Chaisuk, C., Samparnpiboon, P., Praserthdam, P. (2008). Effect of phase composition between nano γ-and χ- Al2O3 on Pt/Al2O3 catalyst in CO oxidation, Catal. Commun., 9, 546-550.
- Sushkevich, V.L., Ivanova, I.I., Ordomsky, V.V., Taarning, E. (2014). Design of a Metal‐Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol, ChemSusChem, 7, 2527-2536.
- Grabchenko, M.V., Mamontov, G.V., Zaikovskii, V.I., La Parola, V., Liotta, L.F., Vodyankina, O. (2019). Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2 interfacial interaction, Catal. Today, 333, 2-9.
- Magaev, O.V., Knyazev, A.S., Vodyankina, O.V., Mamontov, G. (2013). Influence of phosphate addition on activity of Ag and Cu catalysts for partial oxidation of alcohols, Catal. Today., 203, 122-126.
- Autthanit, C., Chatkaew, W., Praserthdam, P., Jongsomjit, B. (2020). Effect of different phase composition in titania on catalytic behaviors of AgLi/TiO2 catalysts via ethanol dehydrogenation. J. Environ. Chem. Eng., 8, 103547.
- Janlamool, J., Jongsomjit, B. (2015). Oxidative dehydrogenation of ethanol over AgLi–Al2O3 catalysts containing different phases of alumina, Catal. Commun., 70, 49-52.
- Krutpijit, C., Tian, W., Jongsomjit, B., Pjontek, D., Herrera, J.E. (2020). Lithium promotion in ethanol oxidative dehydrogenation over Al-modified Ag/Montmorillonite clays, Mol. Catal., 483, 110717.
- Kerdnoi, P., Autthanit, C., Chitpong, N., Jongsomjit, B. (2020). Catalytic Dehydration of Ethanol over W/TiO2 Catalysts Having Different Phases of Titania Support, Bull. Chem. React. Eng. Catal., 15, 96-103.
- Kamsuwan, T., Praserthdam, P., Jongsomjit, B. (2020). Tuning of catalytic behaviors in ethanol dehydration with oxygen cofeeding over Pd-HBZ catalyst for ethylene production at low temperature, Catal. Commun., 137, 105941.
- Huang, X., Men, Y., Wang, J., An, W., Wang, Y. (2017). Highly active and selective binary MgO–SiO2 catalysts for the production of 1, 3-butadiene from ethanol, Catal. Sci. Technol., 7, 168-180.
- Akhade, S.A., Winkelman, A., Dagle, V.L., Kovarik, L., Yuk, S.F., Lee, M.-S., Zhang, J., Padmaperuma, A.B., Dagle, R.A., Glezakou, V.-A., Wang, Y., Rousseau, R. (2020). Influence of Ag metal dispersion on the thermal conversion of ethanol to butadiene over Ag-ZrO2/SiO2 catalysts, J. Catal., 386, 30-38.
- Chanchuey, T., Autthanit, C., Jongsomjit, B. (2016). Effect of Mo-doped mesoporous Al-SSP catalysts for the catalytic dehydration of ethanol to ethylene, J. Chem., 2016, Article ID 9672408.
- Mamontov, G., Grabchenko, M., Sobolev, V., Zaikovskii, V., Vodyankina, O. (2016). Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: role of Ag-CeO2 interface, Appl. Catal. A: Gen., 528, 161-167.
- Fuchigami, K., Taguchi, Y., Tanaka, M. (2008). Synthesis of spherical silica particles by sol‐gel method and application, Polym. Adv. Technol., 19, 977-983.
- Autthanit, C., Praserthdam, P., Jongsomjit, B. (2018). Oxidative and non-oxidative dehydrogenation of ethanol to acetaldehyde over different VOx/SBA-15 catalysts, J. Environ. Chem. Eng., 6, 6516-6529.
- Zhang, G., Xu, Y., Xu, D., Wang, D., Xue, Y., Su, W. (2008). Pressure-induced crystallization of amorphous SiO2 with silicon–hydroxy group and the quick synthesis of coesite under lower temperature, High. Press. Res., 28, 641-650.
- Wang, H., Chen, Z., Chen, D., Yu, Q., Yang, W., Zhou, J., Wu, S. (2019). Facile, template-free synthesis of macroporous SiO2 as catalyst support towards highly enhanced catalytic performance for soot combustion, Chem. Eng. J., 375, 121958.
- Wu, J.C.-S., Chen, C.-H. (2004). A visible-light response vanadium-doped titania nanocatalyst by sol–gel method, J. Photochem. Photobiol. A., 163, 509-515.
- Pestryakov, A.N., Davydov, A. (1995). Study of supported silver states by the method of electron spectroscopy of diffuse reflectance, J. Electron Spectrosc. Relat. Phenom., 74, 195-199.
- Pestryakov, A.N., Davydov, A. (1994). Active electronic states of silver catalysts for methanol selective oxidation, Appl. Catal. A, 120, 7-15.
- Pestryakov, A.N. (1996). Modification of silver catalysts for oxidation of methanol to formaldehyde, Catal. Today, 28, 239-244.
- Pinna, F., Fantinel, T., Strukul, G., Benedetti, A., Pernicone, N. (1997). TPR and XRD study of ammonia synthesis catalysts, Appl. Catal., A, 149, 341-351.
- Kim, Y.-C., Park, N.-C., Shin, J.-S., Lee, S. R., Lee, Y.J., Moon, D. (2003). Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts, Catal. Today., 87, 153-162.
- Grabchenko, M., Mamontov, G., Zaikovskii, V., La Parola, V., Liotta, L., Vodyankina, O. (2018). Design of Ag-CeO2/SiO2 catalyst for oxidative dehydrogenation of ethanol: Control of Ag–CeO2 interfacial interaction, Catal. Today, 333, 2-9.
- Deng, X., Li, M., Zhang, J., Hu, X., Zheng, J., Zhang, N., Chen, B. (2017). Constructing nano-structure on silver/ceria-zirconia towards highly active and stable catalyst for soot oxidation, Chem. Eng. J., 313, 544-555.
- Aneggi, E., Llorca, J., de Leitenburg, C., Dolcetti, G., Trovarelli, A. (2009). Soot combustion over silver-supported catalysts. Appl. Catal., B, 91, 489-498.
- Shimizu, K.-i., Kawachi, H., Satsuma, A. (2010). Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst, Appl. Catal., B, 96, 169-175.
- Shi, R., Wang, F., Mu, X., Li, Y., Huang, X., Shen, W. (2009). MgO-supported Cu nanoparticles for efficient transfer dehydrogenation of primary aliphatic alcohols. Catal. Commun., 11, 306-309.
- Zhang, X., Wan, H.-l., Weng, W.-z., Yi, X.-d. (2003). Effect of Ag promoter on redox properties and catalytic performance of Ag-Mo-PO catalysts for oxidative dehydrogenation of propane, Appl. Surf. Sci., 220, 117-124.
- Bahruji, H., Bowker, M., Brookes, C., Davies, P.R., Wawata, I. (2013). The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts, Appl. Catal., A, 454, 66-73.
- Pinthong, P., Praserthdam, P., Jongsomjit, B. (2020). Oxidative dehydrogenation of ethanol over Cu/Mg-Al catalyst derived from hydrotalcite: effect of ethanol concentration and reduction conditions, J. Zhejiang. Univ-Sc. A, 21, 218-228.
- Zhan, N., Hu, Y., Li, H., Yu, D., Han, Y., Huang, H. (2010). Lanthanum–phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis, Catal. Commun., 11, 633-637.
- Pestryakov, A.N., Davydov, A. (1994). Active electronic states of silver catalysts for methanol selective oxidation, Appl. Catal., A, 120, 7-15.
- Burattin, P., Che, M., Louis, C. (1999). Metal particle size in Ni/SiO2 materials prepared by deposition−precipitation: Influence of the nature of the Ni (II) phase and of its interaction with the support, J. Phys. Chem. B, 103, 6171-6178.
- Ye, G., Sun, Y., Guo, Z., Zhu, K., Liu, H., Zhou, X., Coppens, M.-O. (2018). Effects of zeolite particle size and internal grain boundaries on Pt/Beta catalyzed isomerization of n-pentane, Journal of Catalysis., 360, 152-159
Last update: 2021-01-17 17:05:10
Last update: 2021-01-17 17:05:11
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)