Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate – Methyl Laurate Blend as a Surrogate Biodiesel System

License URL: http://creativecommons.org/licenses/by-sa/4.0

This research investigates the feasibility of methyl oleate-methyl laurate blend as a surrogate biodiesel system which represents jatropha-coconut oil biodiesel, a potentially suitable formulation for tropical climate, to quantify the efficacy of antioxidant additives in terms of their kinetic parameters. This blend was tested by the Rancimat EN14112 standard method. The Rancimat tests results were used to determine the primary oxidation induction period (OIP) and first-order rate constants and activation energies. Addition of BHT and EcotiveTM antioxidants reduces the rate constants (k, h-1) between 15 to 90% in the 50-200 ppm dose range, with EcotiveTM producing significantly lower k values. Higher dose reduces the rate constant, while oleate/laurate ratio produces no significant impact. Antioxidants increase the oxidation activation energy (Ea, kJ/mol) by 180 to almost 400% relative to the non-antioxidant value of 27.0 kJ/mol. EcotiveTM exhibits lower Ea, implying that its higher efficacy stems from a better steric hindrance as apparent from its higher pre-exponential factors. The ability to quantify oxidation kinetic parameters is indicative of the usefulness of methyl oleate-laurate pure FAME blend as a biodiesel surrogate offering better measurement accuracy due to the absence of pre-existing antioxidants in the test samples. Copyright © 2017 BCREC GROUP. All rights reserved
Received: 6th July 2016; Revised: 7th December 2016; Accepted: 30th January 2017
How to Cite: Samadhi, T.W., Hirotsu, T., Goto, S. (2017). Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate-Methyl Laurate Blend as a Surrogate Biodiesel System. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 157-166 (doi:10.9767/bcrec.12.2.861.157-166)
Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.861.157-166
Article Metrics:
- Vijayavenkataraman, S., Iniyan, S., Goic, R. (2012). A Review of Climate Change, Mitigation and Adaptation. Renewable and Sustainable Energy Review, 16: 878-897
- Anonymous. (2007). Climate Change 2007, Synthesis Report, Intergovernmental Panel on Climate Change
- Anonymous. (2012). Turn Down the Heat: Why a 4o Warmer World Must be Avoided, Technical Report, The World Bank
- Anonymous. (2015). CO2 Emissions from Fuel Combustion, Technical Report, International Energy Agency
- Anonymous. (2002). Analysis of Biodiesel Impact on Emissions, Technical Report, United States Environmental Protection Agency
- Frankel, E.N. (1980). Lipid Oxidation. Progress in Lipid Research, 19: 1-22
- Knothe, G. (2007). Some Aspects of Biodiesel Stability. Fuel Processing Technology, 88: 669-677
- Lin, C.Y., Chiu, C.C. (2009). Effects of Oxidation During Long-Term Storage on the Fuel Properties of Palm Oil-Based Biodiesel. Energy and Fuels, 23: 3285-3289
- Canakci, M., Monyem, A., van Gerpen, J. (1999). Accelerated Oxidation Processes in Biodiesel. Transactions of the ASAE, 42: 1565-1572
- Leung, D.Y.C., Koo, B.C.P., Guo, Y. (2006). Degradation of Biodiesel Under Different Storage Conditions. Bioresource Technology, 97: 250-256
- Du Plessis, L.M., de Villiers, J.B.M., van der Walt, W.H. (1985). Stability Studies on Methyl and Ethyl Fatty Acid Esters of Sunflo-werseed Oil. Journal of the American Oil Chemists Society, 62: 748-752
- Dunn, R.O. (2005). Effect of Antioxidants on the Oxidative Stability of Methyl Soyate (Biodiesel). Fuel Processing Technology, 86: 1071-1085
- Schober, S., Mittelbach, M. (2004). The Impact of Antioxidants on Biodiesel Oxidation Stability. European Journal of Lipid Science and Technology, 106: 382-389
- Liang, Y.C., May, C.Y., Foon, C.S., Ngan, M.A., Hock, C.C., Basiron, Y. (2006). The Effect of Natural and Synthetic Antioxidants on the Oxidative Stability of Palm Diesel. Fuel, 85: 867-870
- McCormick, R.L., Ratcliff, M., Moens, L., Lawrence, R. (2007). Several Factors Affecting the Stability of Biodiesel in Standard Accelerated Tests. Fuel Processing Technology, 88: 651-657
- Herbinet, O., Pitz, W.J., Westbrook, C.K. (2008). Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate. Combustion and Flame, 154: 507-528
- Tao, H., Lin, K.C. (B2014). Pathways, Kinetics and Thermochemistry of Methyl-Ester Peroxy Radical Decomposition in the Low-Temperature Oxidation of Methyl Butanoate: A Computational Study of a Biodiesel Fuel Surrogate. Combustion and Flame, 161: 2270-2287
- Xin, J., Imahara, H., Saka, S. (2009). Kinetics on the Oxidation of Biodiesel Stabilized with Antioxidant. Fuel, 88: 282-286
- Chen, Y., Luo, Y. (2011). Oxidation Stability of Biodiesel Derived from Free Fatty Acids Associated with Kinetics of Antioxidants. Fuel Processing Technology, 92: 1387-1393
- Borsato, D., Rafael, J., Cini, D.M., Cremasco, H., Coppo, R.L., Angilelli, K.G., Moreira, I., Cristina, E., Maia, R. (2014). Oxidation Kinetics of Biodiesel from Soybean Mixed with Synthetic Antioxidants BHA, BHT and TBHQ: Determination of Activation Energy. Fuel Processing Technology, 127: 111-116
- Knothe, G. (2002). Structure Indices in FA Chemistry: How Relevant is the Iodine Value? Journal of the American Oil Chemists Society, 79: 847-854
- Ramos, M.J., Fernandez, C.M., Casas, A., Rodriguez, L., Perez, A. (2009). Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology, 100: 261-268
- Nguyen, M.H. (2009). Effect of Storage Temperature and Antioxidants on Biodiesel Blends. In Asia Biomass Energy Researchers Invitation Program 2008, Collected Papers of Invited Research. Tokyo: New Energy Foundation
- Frohlich, A., Schober, S. (2007). The Influence of Tocopherols on the Oxidation Stability of Methyl Esters. Journal of the American Oil Chemists Society, 84: 579-585
- Wang, R., Hanna, M.A., Zhou, W., Bhadury, P.S., Chen, Q., Song, B., Yang, S. (2011). Production and Selected Fuel Properties of Biodiesel from Promising Non-Edible Oils: Euphorbia Lathyris L., Sapium Sebiferum L. and Jatropha Curcas L. Bioresource Technology, 102: 1194-1199
- Nakatani, N., Tachibana, Y., Kikuzaki, H. (2001) Establishment of a Model Substrate Oil for Antioxidant Activity Assessment by Oil Stability Index Method. Journal of the American Oil Chemists Society, 78: 19-23
- Jain, S., Sharma, M.P. (2012). Application of Thermogravimetric Analysis for Thermal Stability of Jatropha Curcas Biodiesel. Fuel, 93: 252-257
Last update: 2021-04-19 16:44:17
Last update: 2021-04-19 16:44:18
License URL: http://creativecommons.org/licenses/by-sa/4.0
Journal Author(s) Rights
In order for BCREC Group to publish and disseminate research articles, we need publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
- use for classroom teaching by Author or Author's institution and presentation at a meeting or conference and distributing copies to attendees;
- use for internal training by author's company;
- distribution to colleagues for their reseearch use;
- use in a subsequent compilation of the author's works;
- inclusion in a thesis or dissertation;
- reuse of portions or extracts from the article in other works (with full acknowledgement of final article);
- preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article);
- voluntary posting on open web sites operated by author or author’s institution for scholarly purposes,
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
Copyright Transfer Agreement for Publishing (Publishing Right)
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below:
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis
Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro
Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Telp/Whatsapp: +62-81-316426342
E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)