skip to main content

NZF Nanoscale Particles: Synthesis, Characterization and its Effective Adsorption of Bromophenol Blue

1Laboratoire de Chimie des Matériaux Inorganiques et Application L.C.M.I.A., Université des sciences et de la Technologie d’Oran Mohammed Boudiaf (USTO M.B), BP 1505 El M’naouar 31000 Oran, Algeria

2Laboratoire des Sciences Technologie et Génie des Procédés L.S.T.G.P., Université des sciences et de la Technologie d’Oran Mohammed Boudiaf (USTO M.B), BP 1505 El M’naouar 31000 Oran, Algeria

Received: 26 Jul 2020; Revised: 10 Sep 2020; Accepted: 11 Sep 2020; Available online: 23 Sep 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The ferrospinels NixZn1_xFe2O4 (x = 0.0 and 0.6) nanoparticles (NPs) were successfully prepared by a sol-gel method and analyzed by TGA/DTA, XRD, SEM-EDS, UV-Vis-DRS, and pHIEP. The adsorption potential of NZF NPs towards the Bromophenol blue (BPB) dye was investigated. The batch adsorption efficiency parameters were studied including contact time, pH, initial dye concentrations and catalyst dosage. Results indicated that NZF crystallized in single-phase and exhibited smaller crystallite size (49 nm vs. 59.24 nm) than that of the pristine (ZF). The SEM analysis showed that the materials are elongated-like shape. NZF catalyst showed a red-shift of absorption bands and a more narrowed band gap (2.30 eV vs. 1.65 eV) as compared to ZF. The adsorption process was found to be highly dependent to the pH of the solution, dye concentration and adsorbent dose. Under optimum conditions of 5 mg.L–1 BPB, 0.5 g.L–1 NZF catalyst, pH = 6, and 25 °C, up to ≈ 86.30%  removal efficiency could be achieved after 60 min. Pseudo-second-order kinetic model gave the best fit with highest correlation coefficients (R2 ≥ 0.99). A high specific surface area, a stabilized dispersion state of NZF NPs and the electrostatic interaction between the BPB-2 anions and the NZF-H3O+active sites on NZF surface were believed to be the main factors that can be responsible for the high adsorption efficiency. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

 

Fulltext View|Download
Keywords: Sol-gel method; Ni0.6Zn0.4Fe2O4; Bromophenol blue; Characterization; Adsorption efficiency
Funding: University of Sciences and Technology of Oran Mohamed Boudiaf (U.S.T.O.M.B.) ; University of Saida

Article Metrics:

  1. Tadjarodi, A., Imani, M., Salehi, M. (2015). ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water, RSC Advances, 5, 56145–56156. doi: 10.1039/C5RA02163D
  2. Dhananasekaran, S., Palanivel, R., Pappu, S. (2016). Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin Nanoparticles, Journal of Advanced Research, 7, 113–124, doi: 10.1016/j.jare.2015.03.003
  3. Elaziouti, A., Laouedj, N., Vannier, R.N. (2016). Adsorption of Congo red on nanosized SnO2 derived from sol-gel method. International Journal of Industrial Chemistry, 7, 53–70, doi: 10.1007/s40090-015-0061-9
  4. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Guerault, H., Greneche, J.M. (2000).Magnetic properties of nanostructured ferrimagnetic zinc ferrite, Journal of Physics: Condensed Matter, 12, 7795-7805, doi: 10.1088/0953-8984/12/35/314
  5. Matsumoto, Y. (1996). Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. Journal of Solid State Chemistry, 126, 227–234, doi: 10.1006/jssc.1996.0333
  6. Valenzuela, M.A., Bosch, P., Jiménez-Becerrill, J., Quiroz, O., Páez, A.I. (2002). Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4, Journal of Photochemistry and Photobiology: A, 148, 177–182, doi: 10.1016/S1010-6030(02)00040-0
  7. Boudjemaa, A., Popescu, I., Juzsakovac, T., Kebir, M., Helaili, N., Bachari, K., Marcu, I.C. (2016) M-substituted (M = Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction, International Journal of Hydrogen Energy, 41, 11108 -11118, doi: 10.1016/j.ijhydene.2016.04.088
  8. Padmapriya, G., Manikandan, A., Krishnasamy, V., Jaganathan, S.K., Antony, S.A. (2016). Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye, Journal of Molecular Structure, 1119, 39-47, doi: 10.1016/j.molstruc.2016.04.049
  9. Gul, M., Akhtar, K. (2017). Synthesis of magnetic ZnFe1.5Al0.5O4 nanoparticles and their photocatalytic activity testing under sunlight irradiation, Journal of Scientific and Innovative Research, 6, 19-24
  10. Harish, K., BhojyaNaik, H. (2013). Solar light active ZnFe2-xAlxO4 materials for optical and photocatalytic activity: an efficient photocatalyst, International Journal of Scientific Research, 4,301-307
  11. Cao, X., Gu, L., Lan, X., Zhao, C., Yao, D., Sheng, W. (2007). Spinel ZnFe2O4 nanoplates embedded with Ag clusters: Preparation, characterization, and photocatalytic application, Materials Chemistry and Physics, 106,175-180, doi: 10.1016/j.matchemphys.2007.05.033
  12. Xie, J.S., Wu, Q.S., Zhao, D.F. (2012). Electrospinning synthesis of ZnFe2O4/Fe3O4/Ag nanoparticle loaded mesoporous carbon fibers with magnetic and photocatalytic properties, Carbon, 50, 800-807, doi: 10.1016/j.carbon.2011.09.036
  13. Cheng, P., Li, W., Zhou, T.L., Jin, Y.P., Gu, M.Y. (2004). Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation, Journal of Photochemistry and Photobiology: A, 168, 97–101, doi: 10.1016/j.jphotochem.2004.05.018
  14. Cheng, P., Deng, C.S., Gu, M.Y., Shangguan, W.F. (2007). Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation, Journal of Materials Science, 42, 9239–9244. doi: 10.1007/s10853-007-1902-5
  15. Jin, Y.X., Li, G.H., Zhang, L.D. (2005). Electron-lattice coupling in ZnFe2O4∕TiO2 nanocomposite films, Applied Physics Letters, 86, 091906. doi: 10.1063/1.1866503
  16. Chen, C.H., Liang, Y.H., Zhang, W.D. (2010). ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation, Journal of Alloys and Compounds, 501, 168–172. doi: 10.1016/j.jallcom.2010.04.072
  17. Kaneva, N.V., Dushkin, C.D. (2011).Tuning of the UV photocatalytic activity of ZnO using zinc ferrite(III): Powders and thin films prepared of powders, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 382, 211–218. doi: 10.1016/j.colsurfa.2010.11.031
  18. Zhang, L., He, Y., Ye, P., Wua, Y., Wua, T. (2013). Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites, Journal of Alloys and Compounds, 549, 105–113. doi: 10.1016/j.jallcom.2012.09.063
  19. Rashad, M.M., Fouad, O.A. (2005). Synthesis and characterization of nano-sized nickel ferrites from fly ash for catalytic oxidation of CO, Material Chemistry and Physics. 94, 365–370. doi: 10.1016/j.matchemphys.2005.05.028
  20. Satyanarayana, L., Reddy, K.M., Manorama, S.V. (2003). Nanosized spinel NiFe2O4: A novel material for the detection of liquefied petroleum gas in air, Materials Chemistry and Physics, 82, 21–26. doi: https://doi.org/10.1016/S0254-0584(03)00170-6
  21. Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y. (2005). Magnetic nanoparticles: preparation, structure and properties, Russian Chemical Reviews, 74, 489–520. doi: DOI:10.1070/RC2005v074n06ABEH000897
  22. Frei, E.H., Gunders, E., Pajewsky, M., Alkan, W.J., Eshchar, J. (1968). Ferrites as Contrast Material for Medical X‐Ray Diagnosis, Journal of Applied Physics, 39, 999–1001. doi: 10.1063/1.1656366
  23. Majeed, M.I., Lu, Q., Yan, W., Li Z., Hussain, I., Tahir, M.N., Tremel, W., Tan, B. (2013). Highly water soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates, Journal of Materials Chemistry B, 1, 2874–2884. doi: 10.1039/c3tb20322
  24. Gar´cia-Jimeno, S., Ortega-Palacios, R., Cepeda-Rubio, M.F.J., Vera,A., Leija, L., Estelrich, J. (2012). Improved thermal ablation efficacy using magnetic nanoparticles: a study in tumors phantoms, Progress in Electrom Research, 128, 229–248. doi: 10.2528/PIER12020108
  25. Landi, G.T. (2013). Simple models for the heating curve in magnetic hyperthermia experiments, Journal of Magnetism and Magnetic Materials, 326, 14–21. doi: 10.1016/j.jmmm.2012.08.034
  26. Manikandan, A., Arul Antony, S., Sridhar, R., Ramakrishna, S., Bououdina, M. (2014). Simple combustion synthesis and optical studies of magnetic Zn1−xNixFe2O4 nanostructures for photoelectrochemical applications, Journal of Nanoscience and Nanotechnology, 14, 1–13. doi: 10.1166/jnn.2015.9814
  27. Manikandan, A., Durka,M., Arul Antony, S. (2014). A Novel Synthesis, Structural, Morphological, and Opto-magnetic Characterizations of Magnetically Separable Spinel CoxMn1−xFe2O4 (0 ≤ x ≤ 1) Nano-catalysts, Journal of Superconductivity and Novel Magnetism, 27, 2841-2857. doi: 10.1007/s10948-014-2771-1
  28. Wang, H.W., Kung, S.C. (2004). Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method, Journal of Magnetism and Magnetic. Materials, 270, 230-236. doi: 10.1016/j.jmmm.2003.09.019
  29. Zahi, S., Hashim, M., Daud, A.R. (2007). Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique, Journal of Magnetism and. Magnetic. Materials, 308, 177-182. doi: 10.1016/j.jmmm.2006.05.033
  30. Verma, A., Thakur, O.P., Prakash, C., Goel, T.C., Mendiratta, R.G. (2005). Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique, Materials Science and Engineering. B, 116, 1-6. doi: 10.1016/j.mseb.2004.08.011
  31. Choi, Y., Shim, H.S., Lee, J.S. (2001). Study on magnetic properties and structural analysis of Ni–Zn ferrite prepared through self-propagating high-temperature synthesis reaction by neutron diffractometry, Journal of Alloys and Compounds, 326, 6-60. doi: 10.1016/S0925-8388(01)01231-2
  32. Mary Jacintha, A., Manikandan, A., Chinnaraj, K., Arul Antony, S., Neeraja, P. (2015). Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties, Journal of Nanoscience and Nanotechnology, 15, 9732-9740. doi: 10.1166/jnn.2015.10343
  33. Santos, O.D., Weiler, M.L., Junior, D.Q., Medina, A.N. (2001). CO gas-sensing characteristics of SnO2 ceramics obtained by chemical precipitation and freeze-drying. Sensors and Actuators. B. 75, 83-87. doi: 10.1016/S0925-4005(01)00537-8
  34. Ibarguen, C.A., Mosquera, A., Parra, R., Castro, M.S., Rodriguez-Paez, J.E. (2007). Synthesis of SnO2 nanoparticles through the controlled precipitation routes, Materials Chemistry and Physics, 101, 433-434. doi: 10.1016/j.matchemphys.2006.08.003
  35. Boreddy, R. (2011). Materials and Production Engineering, University “Federico II” of Naples, Italy
  36. Elaziouti, A., Laouedj, N., Benhadria, N., Bettahar, N. (2016). SnO2 foam grain-shaped nanoparticles: Synthesis, characterization and UVA light induced photocatalysis, Journal of Alloys and Compounds, 679, 408-419. doi: 10.1016/j.jallcom.2016.04.016
  37. Azàroff, L.V. (1968). Elements of X-Ray Crystallography. McGraw-Hill, New-York
  38. Chen, J.L., Chen, D., He, J.J., Zhang, S.Y., Chen, Z.H. (2009).The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films, Applied Surface Science, 255, 9413–9419. doi: 10.1016/j.apsusc.2009.07.044
  39. Dey, S., and Ghose, J. (2003). Synthesis, characerization and magnetic studies on nanocrystalline Co0.2Zn0.8Fe2O4, Materials Research Bulletin, 38 (11-12), 1653-1660. doi: 10.1016/S0025-5408(03)00175-2
  40. Kandasamy, V., Vellaiyappan, S.K.V., Sechassalom, S. (2010). Synthesis of Nickel Zinc Iron Nanoparticles by Coprecipitation Technique, Materials Research, 13(3), 299-303. doi: 10.1590/S1516-14392010000300005
  41. Hu, C., Zhang, Z., Liu, H., Gao, P., Lin Wang, Z. (2006). Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles, Nanotechnology, 17,5983. doi: 10.1088/0957-4484/17/24/013
  42. Safari, A., Gheisari, Kh., Farbod, M. (2017). Characterization of Ni ferrites powders prepared by plasma arc discharge process, Journal of Magnetism and Magnetic Materials, 421,44-51. doi: 10.1016/j.jmmm.2016.07.024
  43. Nalbandian, L., Delimitis, A., Zaspalis, V.T., Deliyanni, E.A., Bakoyannakis, D.N., Peleka, E.N. (2008). Hydrothermally prepared nanocrystalline Mn–Zn ferrites: Synthesis and characterization, Microporous and Mesoporous Materials, 114, 465-473. doi: 10.1016/j.micromeso.2008.01.034
  44. Rath, C., Anand, S., Das, R.P., Sahu, K.K., Kulkarni, S.D., Date, S.K., Mishra, N.C. (2002). Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite, Journal of Applied Physics, 91, 2211-2215. doi: 10.1063/1.1432474
  45. Mohamed Ali, A., Kasim El-Sayed, R., El-Shokrofy, K.M., Abo Arais, A., Shams, M. S. (2014). The influence of Zn2+ ions substitution on the microstructure and transport properties of Mn-Zn nanoferrite, Materials Sciences and Applications, 5, 932-942
  46. Safari, A., Gheisari, Kh., Farbod, M. (2017) . Characterization of Ni ferrites powders prepared by plasma arc discharge process, Journal of Magnetism and Magnetic Materials. 421, 44–51. doi: 10.1016/j.jmmm.2016.07.024
  47. Hemeda, O.M. (2004). IR spectral studies of Co0.6Zn0.4MnxFe2−xO4 ferrites, Journal of Magnetism and Magnetic Materials, 281, 36-41. doi: 10.1016/j.jmmm.2004.01.100
  48. Padmapriya, G., Manikandan, A., Krishnasamy, V., Kumar Jaganathan, S., Arul Antony, S. (2016). Spinel NixZn1−xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye, Journal of Molecular Structure, 1119, 39-47. doi: 10.1016/j.molstruc.2016.04.049
  49. Gao, D.Q., Shi, Z.H., Xu, Y., Zhang, J., Yang, G.J., Zhang, J.L., Wang, X.H., Xue, D.S. (2010). Synthesis, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays, Nanoscale Research Letters, 5, 1289–1294. doi: 10.1007/s11671-010-9640-z
  50. Singh, J.P., Srivastava, R.C., Agrawal, H.M. (2010). Optical behaviour of zinc ferrite nanoparticles, AIP Conference Proceedings, 1276, 137–143. doi: 10.1063/1.3504278
  51. Nazarkovsky, M.A., Gun’ko, V.M., Wójcik, G., Czech, B., Sobieszek, A., Skubiszewska-Zieba, J., Janusz, W., Skwarek, E. (2014). Bandgap change and photocatalytic activity of silica/titania composite associated with incorporation of CuO and NiO, Physic and Technology of Surface, 5, 421–437. doi 10.15407/hftp05.04.421
  52. Henari, F.Z., Culligan, K.G. (2010) .The influence of pH on nonlinear refractive index of Bromophenol Blue, Physics International, 1, 27-30. doi: 10.3844/pisp.2010.27.30
  53. El-Gamal, S.M.A., Amin, M.S., Ahmed, M.A. (2015). Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. Journal of Environmental Chemistry and Engineering, 3, 1702–1712. doi: 10.1016/j.jece.2015.06.022
  54. Fernandez, J., Kiwi, J., Lizama, C., Freer, J., Baeza, J., Mansilla, H.D. (2002). Factorial experimental design of Orange II photocatalytic discolouration, Journal of Photochemistry and Photobiology. A: Chemistry, 151, 213–219. doi: 10.1016/S1010-6030(02)00153-3
  55. Lagergren, S., Vetenskapsakad, K. S. (1898). “ZurTheorie der Sogenannten dsorption GelösterStoffe, Kungliga Svenska Vetenskapsakademiens,” 24, 1–39, Handlingar,
  56. Ho, Y.S., Mc Kay, G. (1999). Pseudo-second order model for sorption processes, Process Biochem, 34 ,451–465. doi: 10.1016/S0032-9592(98)00112-5
  57. Solairaj, D., Rameshthangam, P., Srinivasan, P. (2016). Adsorption of methylene blue, bromophenol blue and coomassie brilliant blue by α-chitin nanoparticles, Journal of Advanced Research, 7, 113-124. doi: 10.1016/j.jare.2015.03.003
  58. Rashad, M., Hattem, A.A. (2019). Promising adsorption studies of bromopheol blue using copper oxide nanoparticles, Desalination and Water Treatment, 139, 360-368, doi: 10.5004/dwt.2019.23296

Last update:

No citation recorded.

Last update:

No citation recorded.