skip to main content

Catalytic Activity of Ni, Co, Mo Supported Anodic Aluminum Oxide Nanocomposites

1Department of Chemistry, National University of Uzbekistan, Vuzgorodok 15, Tashkent 100174, Uzbekistan

2Institute of Material Science, Academy of Sciences of the Republic of Uzbekistan, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan

3Uzbek Research Chemical and Pharmaceutical Institute, Durmon Yuli 40, Tashkent 100125, Uzbekistan

4 Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik khalqa yoli 17, Tashkent 100095, Uzbekistan

View all affiliations
Received: 13 Jul 2020; Revised: 6 Nov 2020; Accepted: 10 Nov 2020; Published: 28 Dec 2020; Available online: 15 Nov 2020.
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Nanostructured catalysts based on porous aluminum oxide (PAO) and some 3d metals, such as: nickel, cobalt, and molybdenum, have been obtained by anodic oxidation and impregnation. The synthesis of porous aluminum oxide with a highly ordered pore structure with pore sizes of 50 nm and a thickness of 50 µm is carried out by the method of two-stage anodic oxidation. The catalysts are obtained by impregnation of 3d metals into nanosized pores of aluminum oxide. The obtained catalysts based on nickel and porous Al2O3 are studied by scanning electron microscopy (SEM-EDX). The results of SEM-EDX analysis shows that a spongy structure with filament sizes of 100 nanometers containing particles of 3d metals formed on the surface of the aluminum oxide matrix. The results are presented on the activity of nickel and heterogenic cobalt and molybdenum nanoparticles in the reaction of hydrogenation of hexene to hexane. The results show that the yield temperature of the hexane is decreased and the yield of hexane is observed at 200 °C with Ni/Al2O3 catalysts, and a similar yield of hexane mass is achieved at temperatures higher than 250 °C with Co-Mo/Al2O3 and traditional nickel catalysts on kieselguhr. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Anodic aluminum oxide; Controllable electrochemical anodization; nickel nanoparticles; hydrogenation; olefin
Funding: Ministry of Innovative Dev. of Republic of Uzbekistan under contract Project PZ-20170926279

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Adiga, S.P., Jin, C., Curtiss, L.A., Monteiro-Riviere, N.A., Narayan, R.J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1(5), 568–581. DOI: 10.1002/wnan.50
  2. Majd, S., Yusko, E.C., Billeh, Y.N., Macrae, M.X., Yang, J., Mayer, M. (2010). Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opin. Biotechnol., 21(4), 439–476. DOI: 10.1016/j.copbio.2010.05.002
  3. Stroeve, P., Ileri, N. (2011). Biotechnical and other applications of nanoporous membranes. Trends Biotechnol., 29(6), 259–266. DOI: 10.1016/j.tibtech.2011.02.002
  4. Smirnov, V.V., Nikolaev, S.A., Tyurina, L.A., Vasil’kov, A.Yu. (2006). Catalysis of olefin hydrogenation and allylic isomerization by immobilized gold nanoclusters. Petroleum Chemistry, 46, 289–290. DOI: 10.1134/S0965544106040128
  5. Jin, Z., Xiao, H., Zhou, W., Zhang, D., Peng, X. (2017). Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer. Royal Society Open Science, 4(12), 171414. DOI: 10.1098/rsos.171414
  6. Hudson, R., Rivière, A., Cirtiua, C.M., Luskaa, K.L., Moores, A. (2012). Iron-iron oxide core–shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media. Chemical Communications, 48, 3360–3362. DOI: 10.1039/C2CC16438H
  7. Wyrwa, D.W., Schmid, G. (2007). Metal Nanoparticles on stainless steel surfaces as novel heterogeneous catalysts. Journal of Cluster Science, 18(3), 476–493. DOI: 10.1007/s10876-007-0123-z
  8. Bhattacharjee, S., Dotzauer, D.M., Bruening, M.L. (2009). Selectivity as a Function of nanoparticle size in the catalytic hydrogenation of unsaturated alcohols. Journal of the American Chemical Society, 131(10), 3601-3610. DOI: 10.1021/ja807415k
  9. Popov, Yu.V., Mokhov, V.M., Latyshova, S.E., Nebykov, D.N., Panov, A.O., Davydova, T.M. (2018). Colloidal and nanosized catalysts in organic synthesis: XX. Continuous Hydrogenation of imines and enamines catalyzed by nickel nanoparticles. Russian Journal of General Chemistry, 88, 2035–2038. DOI: 10.1134/S1070363218100018
  10. Cölfen, H., Mann, S. (2003). Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie International Edition, 42(21), 2350–2365. DOI: 10.1002/anie.200200562
  11. Keller, F., Hunter, M.S., Robinson, D.L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100(9), 411–419. DOI: 10.1149/1.2781142
  12. O’Sullivan, J.P., Wood, G.C. (1970). The Morphology and mechanism of formation of porous anodic films on aluminium, Proceedings of the Royal Society of London A – Mathematical and Physical Sciences, 317, 511-543. DOI: 10.1098/rspa.1970.0129
  13. Morozov, Y.G., Belousova, O.V., Kuznetsov, M.V. (2011). Preparation of nickel nanoparticles for catalytic applications. Inorganic Materials. 47(1), 36–40. DOI: 10.1134/S0020168510121027
  14. Gene, M.J., Miller, A.V. (1983). Levitation-jet method of producing ultrafine metal powders. Surface. Physics, Chemistry, Mechanics, 2, 150–154
  15. Kondrat'eva, T.A., Morozov, Yu.G., Chernov, E.A. (1987) Effect of conditions of manufacture on the properties of ultrafine nickel powder. Powder Metallurgy and Metal Ceramics, 26(10), 793–795. DOI: 10.1007/BF00794359
  16. Gusev, A.I. (2007). Nanomaterials, nanostructures, nanotechnologies. Fizmatlit. Moscow
  17. Lee, W., Nielsch, K., Gösele, U. (2007). Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology, 18, 475713
  18. Chu, S.Z., Wada, K., Inoue, S., Isogai, M., Katsuta, Y., Yasumori, A. (2006). Large-Scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization. J. Electrochem. Soc., 153, B384. DOI: 10.1149/1.2218822
  19. Ryu, Y.R., Lee, T.S., White H.W. (2003). Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett., 83(1), 87-89. DOI: 10.1063/1.1590423
  20. Garces, N.Y., Giles, N.C., Halliburton, L.E., Cantwell, G., Eason, D.B., Reynolds, D.C., Look, D.C. (2002). Production of nitrogen acceptors in ZnO by thermal annealing. Appl. Phys. Lett., 80(8), 1334-1336. DOI: 10.1063/1.1450041
  21. Shingubara, S. (2003). Fabrication of nanomaterials using porous alumina templates. Journal of Nanoparticle Research, 5, 17–30. DOI: 10.1023/A:1024479827507
  22. Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., Gösele, U. (2002). Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Letters, 2(7), 677–680. DOI: 10.1021/nl025537k
  23. Jessensky, O., Müller, F., Gösele, U. (1998). Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, 72, 1173–1175. DOI: 10.1063/1.121004
  24. Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., Tamamura, T. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Applied Physics Letters, 71, 2770–2772. DOI: 10.1063/1.120128
  25. Babaev, M.I., Mikhalev, M.S. (2006). Catalyst of catalytic cracking. Oil refining and petrochemistry. in Research and Development Achievements and the Best Practice, 10, 13-15
  26. Maksimyuk, L.P., Edigarova, V.S., Celidi, E.I. (1990) Prediction of the effectiveness of the application of new cracking catalysts in industrial conditions. Oil Refining and Petrochemistry, 12, 7-10
  27. Lipin, P.V., Doronin, V.P., Gulyaeva, T.I. (2010). Conversion of higher n-alkanes under deep catalytic cracking conditions. Petroleum Chemistry, 50(2), 362-367. DOI: 10.1134/S0965544110050075
  28. Abramova, A.V., Slivinskii, E.V., Goldfarb, Yu.Ya., Panin, A.A., Kulikova, E.A., Kliger, G.A. (2005). Development of efficient zeolite-containing catalysts for petroleum refining and petrochemistry. Kinetics and Catalysis, 46, 758–769 DOI: 10.1007/s10975-005-0133-5

Last update:

No citation recorded.

Last update: 2021-09-19 00:32:44

No citation recorded.