Acid Hydrolysis of Bis(2,2'; 6',2''–Terpyridyl) Iron(II) Complex in the Water Pools of CTAB/Hexane/Chloroform Reverse Micelles-A Kinetic Study in Confined Medium

K. V. Nagalakshmi scopus  -  Department of Chemistry, Gayatri Vidya Parishad College of Engineering (Autonomous), India
*P. Shyamala scopus  -  Department of PNCO, School of Chemistry, Andhra University, India
Received: 6 Jul 2020; Revised: 1 Dec 2020; Accepted: 2 Dec 2020; Published: 28 Dec 2020; Available online: 9 Dec 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The kinetics of acid hydrolysis of bis(2,2';6',2''–terpyridyl) iron(II) complex has been studied in CTAB/Hexane/Chloroform reverse micelles. The reaction obeys first order kinetics with respect to each of the reactants at all values of W, {W= [H2O]/[CTAB]}. In the reverse micellar medium, the reaction is much slower compared to aqueous medium due to low micropolarity of the water pools which does not facilitate a reaction between reactants of same charge. The effect of variation of W {W=[H2O]/[CTAB]} at constant [CTAB] and variation of [CTAB] at fixed W has been studied. The second order rate constant (k2) of the reaction increases as the value of W increases up to W = 8.88 and remains constant thereafter and it is independent of concentration of [CTAB] at constant W. The variation of rate of reaction with W has been explained by considering variation of micropolarity and ionic strength of water pools of reverse micelles with W. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Kinetics; Acid hydrolysis; Bis (2, 2′:6′,2′′-terpyridine) iron (II); Reverse micelles; Water pools.
Funding: Gayatri Vidya Parishad College of Engineering under contract UGC (MRP-4552(14) (SERO/UGC) - DST (SERB/F/5725/2013-14)

Article Metrics:

  1. Lubica, K, Eva, M., Peter, S., Petr, S., Petr, K. (2015). Nature of CTAB/Water/Chloroform Reverse Micelles at Above- and Subzero Temperatures Studied by NMR and Molecular Dynamics Simulations. Langmuir, 31(30), 8284 − 8293. DOI: 10.1021/acs.langmuir.5b01776
  2. Amanda, J.M., John, W., Melanie, M.B. (2014). NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion. J. Phy. Chem. B., 118(36), 10767−10775. DOI: 10.1021/jp504585k
  3. Michael, R., Branka, M.L, Nancy, E.L., Kenneth, W.H. (2004). Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations. J. Chem. Phys., 121(16), 7855−7868. DOI: 10.1063/1.1792592
  4. Menger, F.M., Donohue, J.A., Williams, R.F. (1973). Catalysis in water pools. J. Am. Chem. Soc., 95(1), 286−288. DOI: 10.1021/ja00782a075
  5. Fendler, J.H. (1976). Interactions and reactions in reverse micellar media. Acc. Chem. Res., 9(4), 153−161. DOI: 10.1021/ar50100a005
  6. Mishra, B.K., Valandikar, B.S., Knujappu, J.J., Manomar, C. (1989). Influence of microemulsion structure on reaction rates. J. Colloid Interface Sci., 127, 373−376. DOI: 10.1016/0021-9797(89)90043-X
  7. Sunamoto, J., Hamada, T. (1978). Solvochromism and Thermochromism of Cobalt (II) Complexes Solubilized in Reversed Micelles. Bull. Chem. Soc. Jpn., 51, 3130−3135. DOI: 10.1246/bcsj.51
  8. Mario, J.P, Chaimovich, H. (1986). Water activity in reversed sodium bis(2-ethylhexyl) sulfosuccinate micelles. J. Phys. Chem., 90(2), 282−287. DOI: 10.1021/j100274a016
  9. Yang, L., Zhao, K. (2007). Dielectric model and theoretical analysis of cationic reverse micellar solutions in CTAB/isooctane/n-hexanol/water systems. Langmuir, 23, 8732−8739. DOI: 10.1021/la700665s
  10. Pileni, M.P., (1993). Reverse micelles as micro reactors. J. Phys. Chem., 7, 6967−6973. DOI: 10.1021/j100129a008
  11. Irfan, H.L., Nagi, R.E.R., Jeenat, A., Arifa, A. (2019). Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nano Science, 15(2), 129–136. DOI: 10.2174/1573413714666180611075115
  12. Hoorshad, F., James, P.K., Victor R.V., Olivia, A.G. (2012). Ionic Concentration Effects on Reverse Micelle Size and Stability: Implications for the Synthesis of Nanoparticles. Langmuir, 25, 9267–9274.
  13. Arash, H.K., Rashidi, A.M., Kashi, G. (2017). Synthesis of tungsten nanoparticles by reverse micelle method. Journal of Molecular Liquids, 241, 897−903. DOI: 10.1016/j.molliq.2017.06.053
  14. Garcia-Rio, L., Ramon Leis, J., Elena, P., Emilia, I. (1993). Transfer of the nitroso group in water/AOT/isooctane micro emulsions: intrinsic and apparent reactivity. J. Phys. Chem., 97(13), 3437−3442. DOI: 10.1021/j100115a057
  15. Johnson, M.D., Lorenz, B.B., Wilkins, P.C., Lemons, B.G., Baruah, B., Lamborn, N., Stahla, M., Chatterjee, P.B., Richens, D.T., Crans, D.C. (2012). Switching Off Electron Transfer Reactions in Confined Media: Reduction of [Co(dipic)2]− and [Co(edta)]− by Hexacyanoferrate(II). Inorg. Chem., 51(5), 2757−2765. DOI: 10.1021/ic201247v
  16. Shyamala, P., Subba Rao, P.V. (2010). Kinetics of Oxidation of Iodide by Vanadium (V): Catalysis by the Water Pools of CTAB Reverse Micelles. Kinet. Catal., 51(2), 207−210. DOI: 10.1134/S0023158410020060
  17. Jamil, K.J.S. (2006). Kinetics of the Oxidation of Phenyl hydrazine by [Fe(CN)6]3− in Water‐in‐Oil Microemulsion. J. Dispersion. Sci. Technol., 27(6), 795−798. DOI: 10.1080/01932690500482129
  18. Chuanyi, Y., Shaokun, T., He, Z., Deng, X. (2005). Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane/reverse micelles. Journal of Molecular Catalysis B: Enzymatic, 35(4), 108−112. DOI: 10.1016/j.molcatb.2005.06.005
  19. Miyake, Y., Owari, T., Ishiga, F., Teramoto, M. (1994). Enzymatic reaction in water-in-oil microemulsions - Rate of hydrolysis of a hydrophobic substrate, 2-naphthyl acetate. J. Chem. Soc. Faraday Trans., 90, 979−986. DOI: 10.1039/FT9949000979
  20. García‐Río, L., Mejuto, J.C., P'rez-Lorenzo, M. (2005). Microheterogeneous Solvation for Aminolysis Reactions in AOT‐Based Water‐in‐Oil Microemulsions. Chemistry A Europian Journal, 11, 4361–4373. DOI: 10.1002/chem.200401067
  21. Shyamala, P., Subba Rao, P.V., Ramakrishna, K. (2000). Kinetics of dissociation of tris – (2,2’–bipyridyl) iron (II) in the water pools of CTAB reverse micelles. Ind. J. Chem. 39A, 643−645.
  22. Nagalakshmi, K.V., Padma, M., Srikanth, V., Shyamala, P., Subba Rao, P.V. (2013). Catalytic effect of CTAB reverse micelles on the kinetics of dissociation of bis(2,4,6-tripyridyl-s-triazine) iron(II). Transition Met. Chem., 38, 523−527. DOI: 10.1007/s11243-013-9719-3
  23. Deepa, S., Khilar, K.C., Gousia, B., Subba Rao, P.V. (2005). Kinetics of basic hydrolysis of tris (1,10-phenanthroline) iron(11) in Triton X 100/hexanol/water reverse micelles in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1-3), 73-77. DOI: 10.1016/j.colsurfa.2005.05.062
  24. Nagalakshmi, K.V., Shyamala, P. (2019). Kinetics of oxidation of [Fe(phen)3]+2 by persulphate: catalysis in the water pools of CTAB reverse micelles. Bulg. Chem. Comm., 51(4), 494–498. DOI: 10.34049/bcc.51.4.4946
  25. Luisi, P.L., Straub, B.E. (1984). Reverse Micelles, Plenum Press, New York, P.73, DOI: 10.1002/pol.1985.130230312
  26. Munoz, E., Gomez–Herrera, C., Garciani, M., Moya, M.L., Sanchez, F. (1991). Kinetics of the oxidation of iodide by persulphate in AOT–oil–water, Microemulsions. J. Chem. Soc. Faraday Trans, 87(1), 129−132. DOI: 10.1039/FT9918700129

Last update: 2021-01-18 20:39:58

No citation recorded.

Last update: 2021-01-18 20:39:59

No citation recorded.