Unique Adsorption Properties of Malachite Green on Interlayer Space of Cu-Al and Cu-Al-SiW12O40 Layered Double Hydroxides

Neza Rahayu Palapa orcid scopus  -  Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Novie Juleanti  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Normah Normah  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Tarmizi Taher  -  3 Institute of Regional Innovation, Hirosaki University, Indonesia
*Aldes Lesbani  -  1 Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Received: 27 Jun 2020; Revised: 5 Aug 2020; Accepted: 10 Aug 2020; Published: 28 Dec 2020; Available online: 20 Aug 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

Cu-Al layered double hydroxide (LDH) was intercalated with Keggin ion of polyoxometalate           K4[a-SiW12O40] to form Cu-Al-SiW12O40 LDH. The obtained materials were analyzed by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR) spectroscopy, and Brunaur-Emmett-Teller (BET) surface area analysis. Furthermore, the materials were used as adsorbents of malachite green from aqueous solution. Some variables for adsorption, such as: effect of adsorption times, malachite green concentration, and also adsorption temperature, were explored. The results showed that diffraction at 11.72° on Cu-Al LDH has interlayer distance of 7.56 Å. The intercalation of that LDH with [a-SiW12O40]4 ion resulted increasing interlayer distance to 12.10 Å. The surface area of material was also increased after intercalation from 46.2 m2/g to 89.02 m2/g. The adsorption of malachite green on Cu-Al and          Cu-Al-SiW12O40 LDHs followed pseudo second order kinetic and isotherm Langmuir model with adsorption capacity of Cu-Al and Cu-Al-SiW12O40 LDHs was 55.866 mg/g and 149.253 mg/g, respectively. That adsorption capacity is equal with increasing interlayer space and surface area properties of material after intercalation. Thus, the adsorption of malachite green on Cu-Al and Cu-Al-SiW12O40 LDHs is unique and dominantly occurred on interlayer space of LDH as active site adsorption. Copyright © 2020 BCREC Group. All rights reserved

Keywords: layered double hydroxide; Cu-Al; intercalation; adsorption; malachite green
Funding: Ministry of Education and Culture, Republik Indonesia, Hibah Disertasi Doktor under contract Contract No. 170/SP2H/AMD/LT/DRPM/2020

Article Metrics:

  1. Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.i.H., Bhatti, H.N., Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395-407. DOI: 10.1016/j.molliq.2018.02.034
  2. Panswad, T., Luangdilok, W. (2000). Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Research, 34, 4177–4184. DOI: 10.1016/S0043-1354(00)00200-1
  3. Palapa, N.R., Taher, T., Mohadi, R., Lesbani, A. (2019). Kinetic aspect of direct violet adsorption on M2+/M3+ (M2+: Zn; M3+: Al, Fe, Cr) layered double hydroxides. AIP Conference Proceedings, 2194, 020079. DOI: 10.1063/1.5139811
  4. Darmograi, G., Prelot, B., Geneste, A., Martin-Gassin, A., Salles, F., Zajac, J. (2016). How does competition between anionic pollutants affect adsorption onto Mg-Al layered double hydroxide? Three competition schemes. Journal of Physical Chemistry C, 120, 10410–10418. DOI: 10.1021/acs.jpcc.6b01888
  5. Boulaiche, W., Hamdi, B., Trari, M. (2019). Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies. Applied Water Science, 9, 1–10. DOI: 10.1007/s13201-019-0926-8
  6. Haile, H.L., Abi, T., Tesfahun, K. (2015). Synthesis, characterization and photocatalytic activity of MnO2/Al2O3/Fe2O3 nanocomposite for degradation of malachite green. African Journal of Pure and Applied Chemistry, 9, 211–22. DOI: 10.5897/ajpac2015.0656
  7. Shan, R.R., Yan, L.G., Yang, Y.M., Yang, K., Yu, S.J., Yu, H.Q., Zhu, B.C., Du, B. (2015). Highly efficient removal of three red dyes by adsorption onto Mg–Al-layered double hydroxide. Journal of Industrial and Engineering Chemistry, 21, 561-568. DOI: 10.1016/j.jiec.2014.03.019
  8. Giscard, D., Kamgaing, T., Temgoua, R.C.T., Ymele, E., Tchieno, F.M.M., Tonlé, I.K. (2016). Intercalation of oxalate ions in the interlayer space of a layered double hydroxide for nickel ions adsorption. International Journal of Basic and Applied Sciences, 5, 144. DOI: 10.14419/ijbas.v5i2.5672
  9. Ma, J., Yang, M., Chen, Q., Zhang, S., Cheng, H., Wang, S., Liu, L., Zhang, C., Tong, Z., Chen, Z. (2017). Comparative study of Keggin-type polyoxometalate pillared layered double hydroxides via two synthetic routes: Characterization and catalytic behavior in green epoxidation of cyclohexene. Applied Clay Science, 150, 210–216. DOI: 10.1016/j.clay.2017.09.030
  10. Abdelrahman, E.A. (2018). Synthesis of zeolite nanostructures from waste aluminum cans for efficient removal of malachite green dye from aqueous media. Journal of Molecular Liquids, 253, 72–82. DOI: 10.1016/j.molliq.2018.01.038
  11. Yan, H., Li, H., Yang, H., Li, A., Cheng, R. (2013). Removal of various cationic dyes from aqueous solutions using a kind of fully biodegradable magnetic composite microsphere. Chemical Engineering Journal, 223, 402–411. DOI: 10.1016/j.cej.2013.02.113
  12. Foroutan, R., Mohammadi, R., Razeghi, J., Ramavandi, B. (2019). Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Research, 40, 101509. DOI: 10.1016/j.algal.2019.101509
  13. Shenvi, S.S., Isloor, A.M., Ismail, A.F., Shilton, S.J., Al Ahmed, A. (2015). Humic Acid Based Biopolymeric Membrane for Effective Removal of Methylene Blue and Rhodamine B. Industrial & Engineering Chemistry Research, 54, 4965–4975. DOI: 10.1021/acs.iecr.5b00761
  14. Lesbani, A., Taher, T., Neza, N., Palapa, R., Mohadi, R., Rachmat, A., Mardiyanto, M. (2020). Preparation and utilization of Keggin-type polyoxometalate intercalated Ni-Fe layered double hydroxides for enhanced adsorptive removal of cationic dye. SN Applied Sciences, 2, 470. DOI: 10.1007/s42452-020-2300-8
  15. Mishra, G., Dash, B., Pandey, S. (2018). Applied Clay Science Layered double hydroxides : A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153, 172–186. DOI: 10.1016/j.clay.2017.12.021
  16. Gholami, P., Khataee, A., Soltani, R.D.C., Dinpazhoh, L., Bhatnagar, A. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. DOI: 10.1016/j.jhazmat.2019.121070
  17. Parida, K.M., Mohapatra, L. (2012). Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes. Chemical Engineering Journal, 179, 131–139. DOI: 10.1016/j.cej.2011.10.070
  18. Lesbani, A., Hensen, H., Taher, T., Hidayati, N., Mohadi, R., Andreas, R. (2018). Intercalation of Zn/Al layered double hydroxides with Keggin ion as adsorbent of cadmium(II). AIP Conference Proceedings, 2026, 020011. DOI: 10.1063/1.5064971
  19. Yanming, S., Dongbin, L., Shifeng, L., Lihui, F., Shuai, C., Haque, M.A. (2017). Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide. Arabian Journal of Chemistry, 10, S2295–2301. DOI: 10.1016/j.arabjc.2013.08.005
  20. Bi, B., Xu, L., Xu, B., Liu, X. (2011). Heteropoly blue-intercalated layered double hydroxides for cationic dye removal from aqueous media. Applied Clay Science, 54, 242–247. DOI: 10.1016/j.clay.2011.09.003
  21. Carriazo, D., Lima, S., Martín, C., Pillinger, M., Valente, A.A., Rives, V. (2007). Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. Journal of Physics and Chemistry of Solids, 68, 1872–1880. DOI: 10.1016/j.jpcs.2007.05.012
  22. Nijs, H., Bock, M.D.E., Vansant, E.F. (1999). Comparative Study of the Synthesis and Properties of Polyoxometalate Pillared Layered Double Hydroxides ( POM-LDHs ). Journal of Porous Materials, 110, 101–110.
  23. Taher, T., Christina, M.M., Said, M., Hidayati, N., Ferlinahayati, F., Lesbani, A. (2019). Removal of iron(II) using intercalated Ca/Al layered double hydroxides with [-SiW12O40]4-. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 260–267. DOI: 10.9767/bcrec.14.2.2880.260-267
  24. Gao, M., Wang, Z., Yang, C., Ning, J., Zhou, Z., Li, G. (2019). Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 566, 48–57. DOI: 10.1016/j.colsurfa.2019.01.016
  25. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157, 86–91. DOI: 10.1016/j.clay.2018.02.023
  26. Alderman, D.J. (1985). Malachite green: a review. Journal of Fish Diseases, 8, 289–298. DOI: 10.1111/j.1365-2761.1985.tb00945.x
  27. Palapa, N.R., Taher, T., Rahayu, B.R., Mohadi, R., Rachmat, A., Lesbani, A. (2020). CuAl LDH/Rice Husk Biochar Composite for Enhanced Adsorptive Removal of Cationic Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 15, 525–537. DOI: 10.9767/bcrec.15.2.7828.525-537
  28. Lesbani, A., Fitriliana, F., Mohadi, R. (2015). Conversion of cyclohexanone to adipic acid catalyzed by heteropoly compounds. Indonesian Journal of Chemistry, 15, 64–69. DOI: 10.22146/ijc.21225
  29. Palapa, N.R., Mohadi, R., Rachmat, A., Lesbani, A. (2020). Adsorption Study of Malachite Green Removal from Aqueous Solution Using Cu/M3 + (M3+ = Al, Cr) Layered Double Hydroxide. Mediterranean Journal of Chemistry, 10, 33–45.
  30. Shaji, A., Zachariah, A.K., (2017). Chapter 9 - Surface Area Analysis of Nanomaterials, In Micro and Nano Technologies, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Editor(s): S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra, Elsevier, 197-231, DOI: 10.1016/B978-0-323-46139-9.00009-8
  31. Xia, Y., Yang, T., Zhu, N., Li, D., Chen, Z., Lang, Q., Liu, Z., Jiao, W. (2019). Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis. Bioresource Technology, 288, 1–8. DOI: 10.1016/j.biortech.2019.121593
  32. Elkhattabi, E.H., Lakraimi, M., Berraho, M., Legrouri, A., Hammal, R., El Gaini, L. (2018). Acid Green 1 removal from wastewater by layered double hydroxides. Applied Water Science, 8, 1–11. DOI: 10.1007/s13201-018-0658-1
  33. Ribeiro, C., Scheufele, F.B., Espinoza-Quiñones, F.R., Módenes, A.N., da Silva, M.G.C., Vieira, M.G.A., Borba, C.E. (2015). Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 693–701. DOI: 10.1016/j.colsurfa.2015.05.057
  34. Arabkhani, P., Asfaram, A. (2020). Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. Journal of Hazardous Materials, 384, 121394. DOI: 10.1016/j.jhazmat.2019.121394
  35. Abbas, M. (2020). Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite green (MG) from aqueous solution. Adsorption Science and Technology, 38, 24–45. DOI: 10.1177/0263617420904476
  36. Al-Aidy, H., Amdeha, E. (2020). Green adsorbents based on polyacrylic acid-acrylamide grafted starch hydrogels: the new approach for enhanced adsorption of malachite green dye from aqueous solution. International Journal of Environmental Analytical Chemistry, 100, 1–21. DOI: 10.1080/03067319.2020.1711896
  37. Hidayati, N., Mohadi, R., Elfita, E., Lesbani, A. (2020). Malachite Green Removal by Zn/Al-citrate LDHs in Aqueous Solution. Science and Technology Indonesia, 5, 59. DOI: 10.26554/sti.2020.5.2.59-61
  38. Ahmad, M.A., Afandi, N.S., Bello, O.S. (2017). Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon. Applied Water Science, 7, 717–727. DOI: 10.1007/s13201-015-0284-0

Last update: 2021-01-17 16:36:40

No citation recorded.

Last update: 2021-01-17 16:36:41

No citation recorded.