Copper Ferrite Superparamagnetic Nanoparticle-Catalyzed Cross-coupling Reaction to Form Diindolylmethane (DIM): Effect of Experimental Parameters

*Oanh T.K. Nguyen  -  1 Department of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Viet Nam
Ha Trong Pha  -  1 Department of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Viet Nam
Huynh Dang Khoa  -  1 Department of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Viet Nam
Duy Chinh Nguyen  -  3 NTT Hi-Tech Institute, Nguyen Tat Thanh University, Viet Nam
Nguyen Thi Hong Tam  -  3 NTT Hi-Tech Institute, Nguyen Tat Thanh University, Viet Nam
Received: 22 Jun 2020; Revised: 23 Jul 2020; Accepted: 31 Jul 2020; Published: 1 Dec 2020; Available online: 13 Aug 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Superparamagnetic copper ferrite (CuFe2O4) nanoparticles were utilized as a heterogenous catalyst for the cross-coupling reaction of indole to form 3,3’-diindolylmethane (DIM) as the desirable product. High reaction yield, at around 82%, was achieved under optimal conditions. The CuFe2O4 material could be easily separated from the reaction mixture by an external magnetic field and could be reutilized several times without a significant decrease in catalytic activity. We also showed that no sites of catalyst material leached into reaction solution was detected. To our best knowledge, the above cross-coupling reaction was not previously conducted under catalysis of superparamagnetic nanoparticles. Copyright © 2020 BCREC Group. All rights reserved

Keywords: CuFe2O4; superparamagnetic nanoparticles; heterogeneous catalyst; cross-coupling reaction; 3,3’-diindolylmethane (DIM)

Article Metrics:

  1. Roy, S., Gajbhiye, R., Mandal, M., Pal, C., Meyyapan, A., Mukherjee, J., Jaisankar, P. (2014). Synthesis and antibacterial evaluation of 3,3′-diindolylmethane derivatives. Medicinal Chemistry Research, 23(3), 1371–1377. DOI: 10.1007/s00044-013-0737-7
  2. Rajoria, S., Suriano, R., Parmar, P.S., Wilson, Y.L., Megwalu, U., Moscatello, A., Bradlow, H.L., Sepkovic, D.W., Geliebter, J., Schantz, S.P., Tiwari, R.K. (2011). 3,3′-diindolylmethane modulates estrogen metabolism in patients with thyroid proliferative disease: A pilot study. Thyroid, 21(3), 299–304. DOI: 10.1089/thy.2010.0245
  3. Cho, H.J., Park, S.Y., Kim, E.J., Kim, J.-K., Park, J.H.Y. (2011). 3,3′-diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Molecular Carcinogenesis, 50(2), 100–112. DOI: 10.1002/mc.20698
  4. Zhang, W. W., Feng, Z., Narod, S.A. (2014). Multiple therapeutic and preventive effects of 3,39-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. Journal of Biomedical Research. 28 (5), 339-348. DOI: 10.7555/JBR.28.20140008
  5. Jayakumar, P., Pugalendi, K.V., Sankaran, M. (2014). Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3′- diindolylmethane in C57BL/6J mice. Journal of Physiology and Biochemistry, 70(2), 525–534. DOI: 10.1007/s13105-014-0332-5
  6. Cho, H.J., Seon, M.R., Lee, Y.M., Kim, J., Kim, J.-K., Kim, S.G., Park, J.H.Y. (2008). 3,3′-diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. The Journal of Nutrition, 138(1), 17–23. DOI: 10.1093/jn/138.1.17
  7. Kunimasa, K., Kobayashi, T., Kaji, K., Ohta, T. (2010). Antiangiogenic effects of indole-3-carbinol and 3,3′-diindolylmethane are associated with their differential regulation of erk1/2 and akt in tube-forming huvec. The Journal of Nutrition, 140(1), 1–6. DOI: 10.3945/jn.109.112359
  8. Zong, J., Wu, Q.-Q., Zhou, H., Zhang, J.-Y., Yuan, Y., Bian, Z.-Y., Deng, W., Dai, J., Li, F.-F., Xu, M., Fang, Y., Tang, Q.-Z. (2015). 3,3′-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5′-adenosine monophosphate-activated protein kinase-α. Molecular Medicine Reports, 12(1), 1247–1252. DOI: 10.3892/mmr.2015.3523
  9. Chen, S.-J., Lu, G.-P., Cai, C. (2015). Iridium-catalyzed methylation of indoles and pyrroles using methanol as feedstock. RSC Advances, 5(86), 70329–70332. DOI: 10.1039/C5RA15822B
  10. Qiang, W., Liu, X., Loh, T.-P. (2019). Supported iridium catalyst for the green synthesis of 3,3′-bis(Indolyl)methanes using methanol as the bridging methylene source. ACS Sustainable Chemistry & Engineering, 7(9), 8429–8439. DOI: 10.1021/acssuschemeng.9b00094
  11. Zhang, L., Peng, C., Zhao, D., Wang, Y., Fu, H.-J., Shen, Q., Li, J.-X. (2012). Cu(Ii)-catalyzed C–H (Sp3) oxidation and C–N cleavage: Base-switched methylenation and formylation using tetramethylethylenediamine as a carbon source. Chemical Communications, 48(47), 5928. DOI: 10.1039/c2cc32009f
  12. Pu, F., Li, Y., Song, Y.-H., Xiao, J., Liu, Z.-W., Wang, C., Liu, Z.-T., Chen, J.-G., Lu, J. (2016). Copper-catalyzed coupling of indoles with dimethylformamide as a methylenating reagent. Advanced Synthesis & Catalysis, 358(4), 539–542. DOI: 10.1002/adsc.201500874
  13. Phan, N.T.S., Gill, C.S., Nguyen, J.V., Zhang, Z.J., Jones, C.W. (2006). Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst. Angewandte Chemie International Edition, 45(14), 2209–2212. DOI: 10.1002/anie.200503445
  14. Hudson, R., Ishikawa, S., Li, C.-J., Moores, A. (2013). Magnetically recoverable cufe2o4 nanoparticles as highly active catalysts for csp3-csp and csp3-csp3 oxidative cross-dehydrogenative coupling. Synlett, 24(13), 1637–1642. DOI: 10.1055/s-0033-1339278
  15. Sivakami, R., Babu, S.G., Dhanuskodi, S., Karvembu, R. (2015). Magnetically retrievable lepidocrocite supported copper oxide nanocatalyst (Fe–cuo) for N-arylation of imidazole. RSC Advances, 5(12), 8571–8578. DOI: 10.1039/C4RA13256D
  16. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., Basset, J.-M. (2011). Magnetically recoverable nanocatalysts. Chemical Reviews, 111(5), 3036–3075. DOI: 10.1021/cr100230z
  17. Yang, D., Zhu, X., Wei, W., Jiang, M., Zhang, N., Ren, D., You, J., Wang, H. (2014). Magnetic copper ferrite nanoparticles: An inexpensive, efficient, recyclable catalyst for the synthesis of substituted benzoxazoles via ullmann-type coupling under ligand-free conditions. Synlett., 25(05), 729–735. DOI: 10.1055/s-0033-1340599
  18. Satish, G., Reddy, K.H.V., Ramesh, K., Kumar, B.S.P.A., Nageswar, Y.V.D. (2014). An elegant protocol for the synthesis of N-substituted pyrroles through C–N cross coupling/aromatization process using CuFe2O4 nanoparticles as catalyst under ligand-free conditions. Tetrahedron Letters, 55(16), 2596–2599. DOI: 10.1016/j.tetlet.2014.01.075
  19. Lu, A.-H., Salabas, E.L., Schüth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222–1244. DOI: 10.1002/anie.200602866
  20. Vásquez-Céspedes, S., Holtkamp, M., Karst, U., Glorius, F. (2017). Reusable and magnetic palladium and copper oxide catalysts in direct ortho and meta arylation of anilide derivatives. Synlett., 28(20), 2759–2764. DOI: 10.1055/s-0036-1589007
  21. Zhang, W., Tian, Y., Zhao, N., Wang, Y., Li, J., Wang, Z. (2014). Nano CuO-catalyzed C–H functionalization of 1,3-azoles with bromoarenes and bromoalkenes. Tetrahedron, 70(36), 6120–6126. DOI: 10.1016/j.tet.2014.04.065
  22. Prakash, P., Kumar, R.A., Miserque, F., Geertsen, V., Gravel, E., Doris, E. (2018). Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of in situ -generated organic azides with alkynes. Chemical Communications, 54(29), 3644–3647. DOI: 10.1039/C8CC00231B
  23. Rahimi-Nasrabadi, M., Behpour, M., Sobhani-Nasab, A., Jeddy, M.R. (2016). Nanocrystalline Ce-doped copper ferrite: Synthesis, characterization, and its photocatalyst application. Journal of Materials Science: Materials in Electronics, 27(11), 11691–11697. DOI: 10.1007/s10854-016-5305-8
  24. Al-Hunaiti, A., Al-Said, N., Halawani, L., Haija, M.A., Baqaien, R., Taher, D. (2020). Synthesis of magnetic CuFe2O4 nanoparticles as green catalyst for toluene oxidation under solvent-free conditions. Arabian Journal of Chemistry, 13(4), 4945–4953. DOI: 10.1016/j.arabjc.2020.01.017
  25. Nguyen, O.T.K., Nguyen, L.T., Truong, N.K., Nguyen, V.D., Nguyen, A.T., Le, N.T.H., Le, D.T., Phan, N.T.S. (2017). Synthesis of triphenylamines via ligand-free selective ring-opening of benzoxazoles or benzothiazoles under superparamagnetic nanoparticle catalysis. RSC Advances, 7(65), 40929–40939. DOI: 10.1039/C7RA06168D
  26. Nguyen, O.T.K., Ha, P.T., Dang, H.V., Vo, Y.H., Nguyen, T.T., Le, N.T.H., Phan, N.T.S. (2019). Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyridines/pyrimidines with trans -chalcones. RSC Advances, 9(10), 5501–5511. DOI: 10.1039/C9RA00097F
  27. Ha, P., Nguyen, O., Huynh, K., Nguyen, T., Phan, N. (2018). Synthesis of unnatural arundines using a magnetically reusable copper ferrite catalyst. Synlett, 29(15), 2031–2034. DOI: 10.1055/s-0037-1610227
  28. Tasca, J.E., Ponzinibbio, A., Diaz, G., Bravo, R.D., Lavat, A., González, M.G. (2010). CuFe2O4 nanoparticles: A magnetically recoverable catalyst for selective deacetylation of carbohydrate derivatives. Topics in Catalysis, 53(15–18), 1087–1090. DOI: 10.1007/s11244-010-9538-0
  29. Pillaiyar, T., Gorska, E., Schnakenburg, G., Müller, C.E. (2018). General Synthesis of Unsymmetrical 3,3′-(Aza)diindolylmethane Derivatives. The Journal of Organic Chemistry, 83(17), 9902–9913. DOI: 10.1021/acs.joc.8b01349
  30. Kaswan, P., Nandwana, N.K., DeBoef, B., Kumar, A. (2016). Vanadyl acetylacetonate catalyzed methylenation of imidazo[1,2- a ]pyridines by using dimethylacetamide as a methylene source: Direct access to bis(Imidazo[1,2-a]pyridin-3-yl)methanes. Advanced Synthesis & Catalysis, 358(13), 2108–2115. DOI: 10.1002/adsc.201600225
  31. Deb, M.L., Borpatra, P.J., Pegu, C.D., Thakuria, R., Saikia, P.J., Baruah, P.K. (2017). Iodine/ tert -butyl hydroperoxide-mediated reaction of indoles with dimethylformamide/dimethylacetamide to synthesize bis- and tris(Indolyl)methanes. ChemistrySelect, 2(1), 140–146. DOI: 10.1002/slct.201601857
  32. Panda, N., Jena, A.K., Mohapatra, S., Rout, S.R. (2011). Copper ferrite nanoparticle-mediated N-arylation of heterocycles: A ligand-free reaction. Tetrahedron Letters, 52(16), 1924–1927. DOI: 10.1016/j.tetlet.2011.02.050
  33. Rosario, A.R., Casola, K.K., Oliveira, C.E.S., Zeni, G. (2013). Copper oxide nanoparticle-catalyzed chalcogenation of the carbon-hydrogen bond in thiazoles: Synthesis of 2-(Organochalcogen)thiazoles. Advanced Synthesis & Catalysis, 355(14–15), 2960–2966. DOI: 10.1002/adsc.201300497
  34. Deb, M.L., Borpatra, P.J., Saikia, P.J., Baruah, P.K. (2017). Introducing tetramethylurea as a new methylene precursor: A microwave-assisted RuCl3 -catalyzed cross dehydrogenative coupling approach to bis(Indolyl)methanes. Organic & Biomolecular Chemistry, 15(6), 1435–1443. DOI: 10.1039/C6OB02671K
  35. Modi, A., Ali, W., Patel, B.K. (2016). N,n -dimethylacetamide (DMA) as a methylene synthon for regioselective linkage of imidazo[1,2- a ]pyridine. Advanced Synthesis & Catalysis, 358(13), 2100–2107. DOI: 10.1002/adsc.201600067
  36. Mondal, S., Samanta, S., Santra, S., Bagdi, A. K., Hajra, A. (2016). n,n-dimethylformamide as a methylenating reagent: Synthesis of heterodiarylmethanes via copper-catalyzed coupling between imidazo[1,2-a]pyridines and indoles/ n,n -dimethylaniline. Advanced Synthesis & Catalysis, 358(22), 3633–3641. DOI: 10.1002/adsc.201600674
  37. Srivastava, A., Agarwal, A., Gupta, S.K., Jain, N. (2016). Graphene oxide decorated with Cu(i)Br nanoparticles: A reusable catalyst for the synthesis of potent bisme(Indolyl)thane based anti HIV drugs. RSC Advances, 6(27), 23008–23011. DOI: 10.1039/C6RA02458K

No citation recorded.