skip to main content

Copper Ferrite Superparamagnetic Nanoparticle-Catalyzed Cross-coupling Reaction to Form Diindolylmethane (DIM): Effect of Experimental Parameters

1Department of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam

2Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Viet Nam

3NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam

4 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam

View all affiliations
Received: 22 Jun 2020; Revised: 23 Jul 2020; Accepted: 31 Jul 2020; Available online: 13 Aug 2020; Published: 28 Dec 2020.
Editor(s): Hadi Nur
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Superparamagnetic copper ferrite (CuFe2O4) nanoparticles were utilized as a heterogenous catalyst for the cross-coupling reaction of indole to form 3,3’-diindolylmethane (DIM) as the desirable product. High reaction yield, at around 82%, was achieved under optimal conditions. The CuFe2O4 material could be easily separated from the reaction mixture by an external magnetic field and could be reutilized several times without a significant decrease in catalytic activity. We also showed that no sites of catalyst material leached into reaction solution was detected. To our best knowledge, the above cross-coupling reaction was not previously conducted under catalysis of superparamagnetic nanoparticles. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (

Fulltext View|Download
Keywords: CuFe2O4; superparamagnetic nanoparticles; heterogeneous catalyst; cross-coupling reaction; 3,3’-diindolylmethane (DIM)
Funding: Ho Chi Minh City University of Technology

Article Metrics:

  1. Roy, S., Gajbhiye, R., Mandal, M., Pal, C., Meyyapan, A., Mukherjee, J., Jaisankar, P. (2014). Synthesis and antibacterial evaluation of 3,3′-diindolylmethane derivatives. Medicinal Chemistry Research, 23(3), 1371–1377. DOI: 10.1007/s00044-013-0737-7
  2. Rajoria, S., Suriano, R., Parmar, P.S., Wilson, Y.L., Megwalu, U., Moscatello, A., Bradlow, H.L., Sepkovic, D.W., Geliebter, J., Schantz, S.P., Tiwari, R.K. (2011). 3,3′-diindolylmethane modulates estrogen metabolism in patients with thyroid proliferative disease: A pilot study. Thyroid, 21(3), 299–304. DOI: 10.1089/thy.2010.0245
  3. Cho, H.J., Park, S.Y., Kim, E.J., Kim, J.-K., Park, J.H.Y. (2011). 3,3′-diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Molecular Carcinogenesis, 50(2), 100–112. DOI: 10.1002/mc.20698
  4. Zhang, W. W., Feng, Z., Narod, S.A. (2014). Multiple therapeutic and preventive effects of 3,39-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia. Journal of Biomedical Research. 28 (5), 339-348. DOI: 10.7555/JBR.28.20140008
  5. Jayakumar, P., Pugalendi, K.V., Sankaran, M. (2014). Attenuation of hyperglycemia-mediated oxidative stress by indole-3-carbinol and its metabolite 3, 3′- diindolylmethane in C57BL/6J mice. Journal of Physiology and Biochemistry, 70(2), 525–534. DOI: 10.1007/s13105-014-0332-5
  6. Cho, H.J., Seon, M.R., Lee, Y.M., Kim, J., Kim, J.-K., Kim, S.G., Park, J.H.Y. (2008). 3,3′-diindolylmethane suppresses the inflammatory response to lipopolysaccharide in murine macrophages. The Journal of Nutrition, 138(1), 17–23. DOI: 10.1093/jn/138.1.17
  7. Kunimasa, K., Kobayashi, T., Kaji, K., Ohta, T. (2010). Antiangiogenic effects of indole-3-carbinol and 3,3′-diindolylmethane are associated with their differential regulation of erk1/2 and akt in tube-forming huvec. The Journal of Nutrition, 140(1), 1–6. DOI: 10.3945/jn.109.112359
  8. Zong, J., Wu, Q.-Q., Zhou, H., Zhang, J.-Y., Yuan, Y., Bian, Z.-Y., Deng, W., Dai, J., Li, F.-F., Xu, M., Fang, Y., Tang, Q.-Z. (2015). 3,3′-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5′-adenosine monophosphate-activated protein kinase-α. Molecular Medicine Reports, 12(1), 1247–1252. DOI: 10.3892/mmr.2015.3523
  9. Chen, S.-J., Lu, G.-P., Cai, C. (2015). Iridium-catalyzed methylation of indoles and pyrroles using methanol as feedstock. RSC Advances, 5(86), 70329–70332. DOI: 10.1039/C5RA15822B
  10. Qiang, W., Liu, X., Loh, T.-P. (2019). Supported iridium catalyst for the green synthesis of 3,3′-bis(Indolyl)methanes using methanol as the bridging methylene source. ACS Sustainable Chemistry & Engineering, 7(9), 8429–8439. DOI: 10.1021/acssuschemeng.9b00094
  11. Zhang, L., Peng, C., Zhao, D., Wang, Y., Fu, H.-J., Shen, Q., Li, J.-X. (2012). Cu(Ii)-catalyzed C–H (Sp3) oxidation and C–N cleavage: Base-switched methylenation and formylation using tetramethylethylenediamine as a carbon source. Chemical Communications, 48(47), 5928. DOI: 10.1039/c2cc32009f
  12. Pu, F., Li, Y., Song, Y.-H., Xiao, J., Liu, Z.-W., Wang, C., Liu, Z.-T., Chen, J.-G., Lu, J. (2016). Copper-catalyzed coupling of indoles with dimethylformamide as a methylenating reagent. Advanced Synthesis & Catalysis, 358(4), 539–542. DOI: 10.1002/adsc.201500874
  13. Phan, N.T.S., Gill, C.S., Nguyen, J.V., Zhang, Z.J., Jones, C.W. (2006). Expanding the utility of one-pot multistep reaction networks through compartmentation and recovery of the catalyst. Angewandte Chemie International Edition, 45(14), 2209–2212. DOI: 10.1002/anie.200503445
  14. Hudson, R., Ishikawa, S., Li, C.-J., Moores, A. (2013). Magnetically recoverable cufe2o4 nanoparticles as highly active catalysts for csp3-csp and csp3-csp3 oxidative cross-dehydrogenative coupling. Synlett, 24(13), 1637–1642. DOI: 10.1055/s-0033-1339278
  15. Sivakami, R., Babu, S.G., Dhanuskodi, S., Karvembu, R. (2015). Magnetically retrievable lepidocrocite supported copper oxide nanocatalyst (Fe–cuo) for N-arylation of imidazole. RSC Advances, 5(12), 8571–8578. DOI: 10.1039/C4RA13256D
  16. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., Basset, J.-M. (2011). Magnetically recoverable nanocatalysts. Chemical Reviews, 111(5), 3036–3075. DOI: 10.1021/cr100230z
  17. Yang, D., Zhu, X., Wei, W., Jiang, M., Zhang, N., Ren, D., You, J., Wang, H. (2014). Magnetic copper ferrite nanoparticles: An inexpensive, efficient, recyclable catalyst for the synthesis of substituted benzoxazoles via ullmann-type coupling under ligand-free conditions. Synlett., 25(05), 729–735. DOI: 10.1055/s-0033-1340599
  18. Satish, G., Reddy, K.H.V., Ramesh, K., Kumar, B.S.P.A., Nageswar, Y.V.D. (2014). An elegant protocol for the synthesis of N-substituted pyrroles through C–N cross coupling/aromatization process using CuFe2O4 nanoparticles as catalyst under ligand-free conditions. Tetrahedron Letters, 55(16), 2596–2599. DOI: 10.1016/j.tetlet.2014.01.075
  19. Lu, A.-H., Salabas, E.L., Schüth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46(8), 1222–1244. DOI: 10.1002/anie.200602866
  20. Vásquez-Céspedes, S., Holtkamp, M., Karst, U., Glorius, F. (2017). Reusable and magnetic palladium and copper oxide catalysts in direct ortho and meta arylation of anilide derivatives. Synlett., 28(20), 2759–2764. DOI: 10.1055/s-0036-1589007
  21. Zhang, W., Tian, Y., Zhao, N., Wang, Y., Li, J., Wang, Z. (2014). Nano CuO-catalyzed C–H functionalization of 1,3-azoles with bromoarenes and bromoalkenes. Tetrahedron, 70(36), 6120–6126. DOI: 10.1016/j.tet.2014.04.065
  22. Prakash, P., Kumar, R.A., Miserque, F., Geertsen, V., Gravel, E., Doris, E. (2018). Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of in situ -generated organic azides with alkynes. Chemical Communications, 54(29), 3644–3647. DOI: 10.1039/C8CC00231B
  23. Rahimi-Nasrabadi, M., Behpour, M., Sobhani-Nasab, A., Jeddy, M.R. (2016). Nanocrystalline Ce-doped copper ferrite: Synthesis, characterization, and its photocatalyst application. Journal of Materials Science: Materials in Electronics, 27(11), 11691–11697. DOI: 10.1007/s10854-016-5305-8
  24. Al-Hunaiti, A., Al-Said, N., Halawani, L., Haija, M.A., Baqaien, R., Taher, D. (2020). Synthesis of magnetic CuFe2O4 nanoparticles as green catalyst for toluene oxidation under solvent-free conditions. Arabian Journal of Chemistry, 13(4), 4945–4953. DOI: 10.1016/j.arabjc.2020.01.017
  25. Nguyen, O.T.K., Nguyen, L.T., Truong, N.K., Nguyen, V.D., Nguyen, A.T., Le, N.T.H., Le, D.T., Phan, N.T.S. (2017). Synthesis of triphenylamines via ligand-free selective ring-opening of benzoxazoles or benzothiazoles under superparamagnetic nanoparticle catalysis. RSC Advances, 7(65), 40929–40939. DOI: 10.1039/C7RA06168D
  26. Nguyen, O.T.K., Ha, P.T., Dang, H.V., Vo, Y.H., Nguyen, T.T., Le, N.T.H., Phan, N.T.S. (2019). Superparamagnetic nanoparticle-catalyzed coupling of 2-amino pyridines/pyrimidines with trans -chalcones. RSC Advances, 9(10), 5501–5511. DOI: 10.1039/C9RA00097F
  27. Ha, P., Nguyen, O., Huynh, K., Nguyen, T., Phan, N. (2018). Synthesis of unnatural arundines using a magnetically reusable copper ferrite catalyst. Synlett, 29(15), 2031–2034. DOI: 10.1055/s-0037-1610227
  28. Tasca, J.E., Ponzinibbio, A., Diaz, G., Bravo, R.D., Lavat, A., González, M.G. (2010). CuFe2O4 nanoparticles: A magnetically recoverable catalyst for selective deacetylation of carbohydrate derivatives. Topics in Catalysis, 53(15–18), 1087–1090. DOI: 10.1007/s11244-010-9538-0
  29. Pillaiyar, T., Gorska, E., Schnakenburg, G., Müller, C.E. (2018). General Synthesis of Unsymmetrical 3,3′-(Aza)diindolylmethane Derivatives. The Journal of Organic Chemistry, 83(17), 9902–9913. DOI: 10.1021/acs.joc.8b01349
  30. Kaswan, P., Nandwana, N.K., DeBoef, B., Kumar, A. (2016). Vanadyl acetylacetonate catalyzed methylenation of imidazo[1,2- a ]pyridines by using dimethylacetamide as a methylene source: Direct access to bis(Imidazo[1,2-a]pyridin-3-yl)methanes. Advanced Synthesis & Catalysis, 358(13), 2108–2115. DOI: 10.1002/adsc.201600225
  31. Deb, M.L., Borpatra, P.J., Pegu, C.D., Thakuria, R., Saikia, P.J., Baruah, P.K. (2017). Iodine/ tert -butyl hydroperoxide-mediated reaction of indoles with dimethylformamide/dimethylacetamide to synthesize bis- and tris(Indolyl)methanes. ChemistrySelect, 2(1), 140–146. DOI: 10.1002/slct.201601857
  32. Panda, N., Jena, A.K., Mohapatra, S., Rout, S.R. (2011). Copper ferrite nanoparticle-mediated N-arylation of heterocycles: A ligand-free reaction. Tetrahedron Letters, 52(16), 1924–1927. DOI: 10.1016/j.tetlet.2011.02.050
  33. Rosario, A.R., Casola, K.K., Oliveira, C.E.S., Zeni, G. (2013). Copper oxide nanoparticle-catalyzed chalcogenation of the carbon-hydrogen bond in thiazoles: Synthesis of 2-(Organochalcogen)thiazoles. Advanced Synthesis & Catalysis, 355(14–15), 2960–2966. DOI: 10.1002/adsc.201300497
  34. Deb, M.L., Borpatra, P.J., Saikia, P.J., Baruah, P.K. (2017). Introducing tetramethylurea as a new methylene precursor: A microwave-assisted RuCl3 -catalyzed cross dehydrogenative coupling approach to bis(Indolyl)methanes. Organic & Biomolecular Chemistry, 15(6), 1435–1443. DOI: 10.1039/C6OB02671K
  35. Modi, A., Ali, W., Patel, B.K. (2016). N,n -dimethylacetamide (DMA) as a methylene synthon for regioselective linkage of imidazo[1,2- a ]pyridine. Advanced Synthesis & Catalysis, 358(13), 2100–2107. DOI: 10.1002/adsc.201600067
  36. Mondal, S., Samanta, S., Santra, S., Bagdi, A. K., Hajra, A. (2016). n,n-dimethylformamide as a methylenating reagent: Synthesis of heterodiarylmethanes via copper-catalyzed coupling between imidazo[1,2-a]pyridines and indoles/ n,n -dimethylaniline. Advanced Synthesis & Catalysis, 358(22), 3633–3641. DOI: 10.1002/adsc.201600674
  37. Srivastava, A., Agarwal, A., Gupta, S.K., Jain, N. (2016). Graphene oxide decorated with Cu(i)Br nanoparticles: A reusable catalyst for the synthesis of potent bisme(Indolyl)thane based anti HIV drugs. RSC Advances, 6(27), 23008–23011. DOI: 10.1039/C6RA02458K

Last update:

No citation recorded.

Last update:

No citation recorded.