skip to main content

Effect of FSP-inserted Cu on Physicochemical Properties of Cu/Al2O3 Catalyst

1Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand

2Synchrotron Light Research Institute, 111 University Ave., Muang, Nakhon Ratchasima 30000, Thailand

Received: 18 Jun 2020; Revised: 7 Aug 2020; Accepted: 10 Aug 2020; Available online: 26 Aug 2020; Published: 28 Dec 2020.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The copper inserted on Cu/Al2O3 catalysts with various Cu loading (10-40 wt%) were synthesized via flame spray pyrolysis (FSP). These catalysts were characterized using X-ray diffraction (XRD), N2 physisorption, temperature programmed reduction (TPR) and X-ray absorption near edge spectroscopy (XANES). The XRD results confirmed the formation of copper aluminate spinel (CuAl2O4) on the FSP-inserted Cu catalyst. The CuO crystallite size of the Cu/Al2O3 catalysts was increased with increasing Cu loading during the flame spray pyrolysis step. The incorporation of copper and aluminum precursors during the flame spray pyrolysis step can inhibit the growth of Al2O3 particles resulting in higher BET surface area and smaller particle size than pure Al2O3 support. The data from TPR and XANES results can predict the ratio of CuO and CuAl2O4 in the FSP-made support. Less than 20 wt% loading of the FSP-inserted Cu showed high concentration of CuAl2O4 phase in the FSP-made material. The composition of CuO and CuAl2O4 phase can be controlled by varying Cu loading in flame spray pyrolysis step. This is a promising alternative way to synthesize the desired catalyst. An example was the catalytic testing of the selective hydrogenolysis of glycerol. The presence of both CuO and CuAl2O4 phases in the Cu/Al2O3 catalyst enhanced the catalytic activity and promoted the selectivity to acetol product. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Flame spray pyrolysis (FSP); Cu/Al2O3; CuAl2O4 spinel; CuO/CuAl2O4 ratio
Funding: Silpakorn University

Article Metrics:

  1. Huang, Z., Cui, F., Kang, H., Chen, J., Xia, C. (2009). Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium. Applied Catalysis A: General, 366, 288-298. DOI: 10.1016/j.apcata.2009.07.017
  2. Sánchez, T., Salagre, P., Cesteros, Y., Bueno-López, A. (2012). Use of delaminated hectorites as supports of copper catalysts for the hydrogenolysis of glycerol to 1,2-propanediol. Chemical Engineering Journal, 179, 302-311. DOI: 10.1016/j.cej.2011.11.011
  3. Mitta, H., Seelam, P.K., Ojala, S., Keiski, R. L., Balla, P. (2018). Tuning Y-zeolite based catalyst with copper for enhanced activity and selectivity in vapor phase hydrogenolysis of glycerol to 1,2-propanediol. Applied Catalysis A: General, 550, 308-319. DOI: 10.1016/j.apcata.2017.10.019
  4. Kusunoki, Y., Miyazawa, T., Kunimori, K., Tomishige, K. (2005). Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catalysis Communications, 6, 645-649. DOI: 10.1016/j.catcom.2005.06.006
  5. Mai, C.T.Q., Ng, F.T.T. (2016). Effect of metals on the hydrogenolysis of glycerol to higher value sustainable and green chemicals using a supported HSiW catalyst. Organic Process Research & Development, 20, 1774-1780. DOI: 10.1021/acs.oprd.6b00245
  6. Xiao, Z., Wang, X., Xiu, J., Wang, Y., Williams, C.T., Liang, C. (2014). Synergetic effect between Cu0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol. Catalysis Today, 234, 200-207. DOI: 10.1016/j.cattod.2014.02.025
  7. Delannoy, L., Thrimurthulu, G., Reddy, P.S., Méthivier, C., Nelayah, J., Reddy, B.M., Louis, C. (2014). Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold–copper catalysts prepared by deposition–precipitation. Physical Chemistry Chemical Physics, 16, 26514-26527. DOI: 10.1039/C4CP02141J
  8. Suh, Y.-W., Moon, S.-H., Rhee, H.-K. (2000). Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2. Catalysis Today, 63, 447-452. DOI: 10.1016/S0920-5861(00)00490-9
  9. Sun, Y., Sermon, P.A. (1994). Evidence of a metal-support interaction in sol-gel derived Cu-ZrO2 catalysts for CO hydrogenation. Catalysis Letters, 29, 361-369. DOI: 10.1007/BF00807115
  10. Abaide, E., Anchieta, C., Foletto, V., Reinehr, B., Nunes, L., Kuhn, R., Foletto, E. (2015). Production of copper and cobalt aluminate spinels and their application as supports for inulinase immobilization. Materials Research, 18, 1062-1069. DOI: 10.1590/1516-1439.031415
  11. Kwak, B.K., Park, D.S., Yun, Y.S., Yi, J. (2012). Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol–gel method for the hydrogenolysis of glycerol. Catalysis Communications, 24, 90-95. DOI: 10.1016/j.catcom.2012.03.029
  12. Xi, H.J., Li, G.J., Qing, S., Hou, X.N., Zhao, J.Z., Liu, Y.J., Gao, Z. (2013). Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 41, 998-1002
  13. Chinnadurai, R., Vijaya, J., Kumar R.T., Kennedy, L. (2015). Selective liquid phase oxidation of benzyl alcohol catalyzed by copper aluminate nanostructures. Journal of Molecular Structure, 1079, 182. DOI: 10.1016/j.molstruc.2014.09.045
  14. Tangcharoen, T., T-Thienprasert, J., Kongmark, C. (2018). Optical properties and versatile photocatalytic degradation ability of MAl2O4 (M = Ni, Cu, Zn) aluminate spinel nanoparticles. Journal of Materials Science: Materials in Electronics, 29, 8995-9006. DOI: 10.1007/s10854-018-8924-4
  15. Wen, Y., Huang, W., Wang, B. (2012). A novel method for the preparation of Cu/Al2O3 nanocomposite. Applied Surface Science, 258, 2935-2938. DOI: 10.1016/j.apsusc.2011.11.010
  16. Shim, J.-O., Na, H.-S., Jha, A., Jang, W.-J., Jeong, D.-W., Nah, I.W., Roh, H.-S. (2016). Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions. Chemical Engineering Journal, 306, 908-915. DOI: 10.1016/j.cej.2016.08.030
  17. Morales-Leal, F.J., Rivera De la Rosa, J., Lucio-Ortiz, C.J., Bustos Martínez, D., De Haro Del Rio, D.A., Garza-Navarro, M.A., Garcia, C.D. (2018). Comparison between the catalytic and photocatalytic activities of Cu/Al2O3 and TiO2 in the liquid–phase oxidation of methanol–ethanol mixtures: Development of a kinetic model for the preparation of catalyst. Applied Catalysis A: General, 562, 184-197. DOI: 10.1016/j.apcata.2018.05.032
  18. Wolosiak-Hnat, A., Milchert, E., Grzmil, B. (2013). Influence of parameters on glycerol hydrogenolysis over a Cu/Al2O3 catalyst. Chemical Engineering & Technology, 36, 411-418. DOI: 10.1002/ceat.201200549
  19. Azurdia, J.A., Marchal, J., Shea, P., Sun, H., Pan, X.Q., Laine, R.M. (2006). Liquid-feed flame spray pyrolysis as a method of producing mixed-metal oxide nanopowders of potential interest as catalytic materials. Nanopowders along the NiO−Al2O3 tie line including (NiO)0.22(Al2O3)0.78, A new inverse spinel composition. Chemistry of Materials, 18, 731-739. DOI: 10.1021/cm0503026
  20. Divband Hafshejani, L., Tangsir, S., Koponen, H., Riikonen, J., Karhunen, T., Tapper, U., Lähde, A. (2016). Synthesis and characterization of Al2O3 nanoparticles by flame spray pyrolysis (FSP) - Role of Fe ions in the precursor. Powder Technology, 298, 42–49. DOI: 10.1016/j.powtec.2016.05.003
  21. Betancur Granados, N., Yi, E., Laine, R., Restrepo, O. (2015). CoAl2O4 Blue nanopigments prepared by liquid-feed flames pyrolysis method. Matéria (Rio de Janeiro), 20, 580-587. DOI: 10.1590/S1517-707620150003.0059
  22. Kim, M., Hinklin, T.R., Laine, R.M. (2008). Core−shell nanostructured nanopowders along (CeOx)x(Al2O3)1−x tie-line by liquid-feed flame spray pyrolysis (LF-FSP). Chemistry of Materials, 20, 5154-5162. DOI: 10.1021/cm703382x
  23. Zheng, W., Zou, J. (2015). Synthesis and characterization of blue TiO2/CoAl2O4 complex pigments with good colour and enhanced near-infrared reflectance properties. RSC Advances, 5, 87932-87939. DOI: 10.1039/C5RA17418J
  24. Zarazúa-Villalobos, L., Téllez-Jurado, L., Vargas-Becerril, N., Fantozzi, G., Balmori-Ramírez, H. (2018). Synthesis of magnesium aluminate spinel nanopowder by sol–gel and low-temperature processing. Journal of Sol-Gel Science and Technology, 85, 110-120. DOI: 10.1007/s10971-017-4526-5
  25. Rahmat, N., Yaakob, Z., Pudukudy, M., Rahman, N.A., Jahaya, S.S. (2018). Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties. Powder Technology, 329, 409-419. DOI: 10.1016/j.powtec.2018.02.007
  26. Chaudhary, R.G., Sonkusare, V.N., Bhusari, G.S., Mondal, A., Shaik, D.P.M.D., Juneja, H.D. (2018). Microwave-mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic performance. Research on Chemical Intermediates, 44, 2039-2060. DOI: 10.1007/s11164-017-3213-z
  27. Høj, M., Linde, K., Hansen, T.K., Brorson, M., Jensen, A.D., Grunwaldt, J.-D. (2011). Flame spray synthesis of CoMo/Al2O3 hydrotreating catalysts. Applied Catalysis A: General, 397, 201-208. DOI: 10.1016/j.apcata.2011.02.034
  28. Meng, L., Zhao, H. (2020). Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis. Applied Catalysis B: Environmental, 264, 118427. DOI: 10.1016/j.apcatb.2019.118427
  29. Strobel, R., Baiker, A., Pratsinis, S.E. (2006). Aerosol flame synthesis of catalysts. Advanced Powder Technology, 17, 457-480. DOI: 10.1163/156855206778440525
  30. Mekasuwandumrong, O., Phothakwanpracha, S., Jongsomjit, B., Shotipruk, A., Panpranot, J. (2011). Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technology, 210, 328-331. DOI: 10.1016/j.powtec.2011.03.017
  31. Chaisuk, C., Boonpitak, P., Panpranot, J., Mekasuwandumrong, O. (2011). Effects of Co dopants and flame conditions on the formation of Co/ZrO2 nanoparticles by flame spray pyrolysis and their catalytic properties in CO hydrogenation. Catalysis Communications, 12, 917-922. DOI: 10.1016/j.catcom.2011.01.016
  32. Klysubun, W., Tarawarakarn, P., Thamsanong, N., Amonpattaratkit, P., Cholsuk, C., Lapboonrueng, S., Wongtepa, W. (2019). Upgrade of SLRI BL8 beamline for XAFS spectroscopy in a photon energy range of 1–13 keV. Radiation Physics and Chemistry, 175, 108145. DOI: 10.1016/j.radphyschem.2019.02.004
  33. Ravel, B., Newville, M. (2005). ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537-541. DOI: 10.1107/S0909049505012719
  34. López-Suárez, F.E., Bueno-López, A., Illán-Gómez, M.J. (2008). Cu/Al2O3 catalysts for soot oxidation: Copper loading effect. Applied Catalysis B: Environmental, 84, 651-658. DOI: 10.1016/j.apcatb.2008.05.019
  35. Hannemann, S., Grunwaldt, J.-D., Lienemann, P., Günther, D., Krumeich, F., Pratsinis, S.E., Baiker, A. (2007). Combination of flame synthesis and high-throughput experimentation: The preparation of alumina-supported noble metal particles and their application in the partial oxidation of methane. Applied Catalysis A: General, 316, 226-239. DOI: 10.1016/j.apcata.2006.09.034
  36. Channei, D., Inceesungvorn, B., Wetchakun, N., Phanichphant, S., Nakaruk, A., Koshy, P., Sorrell, C.C. (2013). Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceramics International, 39, 3129-3134. DOI: 10.1016/j.ceramint.2012.09.093
  37. Pisduangdaw, S., Panpranot, J., Chaisuk, C., Faungnawakij, K., Mekasuwandumrong, O. (2011). Flame sprayed tri-etallic Pt–Sn–X/Al2O3 catalysts (X = Ce, Zn, and K) for propane dehydration. Catalysis Communications, 12, 1161-1165. DOI: 10.1016/j.catcom.2011.04.002
  38. Kamil, D. (2018). Formation of γ-Al2O3 Nanoparticles coating by laser assisted spray pyrolysis and controlled of particle size. Advances in Environmental Biology, 9, 132-138
  39. Tok, A., Boey, F., Zhao, X. (2006). Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis. Journal of Materials Processing Technology, 178, 270-273. DOI: 10.1016/j.jmatprotec.2006.04.007
  40. Yu, J., Zhang, Z., Dallmann, F., Zhang, J., Miao, D., Xu, H., Dittmeyer, R. (2016). Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis. Applied Catalysis B: Environmental, 198, 171-179. DOI: 10.1016/j.apcatb.2016.05.050
  41. Volanti, D.P., Keyson, D., Cavalcante, L.S., Simões, A.Z., Joya, M.R., Longo, E., Souza, A.G. (2008). Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. Journal of Alloys and Compounds, 459, 537-542. DOI: 10.1016/j.jallcom.2007.05.023
  42. Silva, H., Mateos Pedrero, C., Ribeirinha, P., Boaventura, M., Mendes, A. (2015). Low-temperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst. Reaction Kinetics, Mechanisms and Catalysis, 115, 321-339. DOI: 10.1007/s11144-015-0846-z
  43. Shishido, T., Yamamoto, Y., Morioka, H., Takaki, K., Takehira, K. (2004). Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Applied Catalysis A: General, 263, 249-253. DOI: 10.1016/j.apcata.2003.12.018
  44. Ding, J., Chen, J. (2015). Synthesis of Cu-Zn-Zr-Al-O catalyst via a citrate complex route modified by different solvents and their dehydrogenation/hydrogenation performance. RSC Advances, 5, 82822-82833. DOI: 10.1039/C5RA13778K
  45. Chen, L.-F., Guo, P.-J., Zhu, L.-J., Qiao, M.-H., Shen, W., Xu, H.-L., Fan, K.-N. (2009). Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Applied Catalysis A: General, 356, 129-136. DOI: 10.1016/j.apcata.2008.12.029
  46. He, M., Luo, M., Fang, P. (2006). Characterization of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst by In-situ XRD, Raman spectroscopy and TPR. Journal of Rare Earths, 24, 188-192. DOI: 10.1016/S1002-0721(06)60091-4
  47. Matsuoka, M., Ju, W.-S., Takahashi, K., Yamashita, H., Anpo, M. (2000). Photocatalytic decomposition of N2O into N2 and O2 at 298 K on Cu(I) ion catalysts anchored onto various oxides. The effect of the coordination state of the Cu(I) ions on the photocatalytic reactivity. The Journal of Physical Chemistry B, 104, 4911-4915. DOI: 10.1021/jp9940001
  48. Hahn, J.E., Scott, R.A., Hodgson, K.O., Doniach, S., Desjardins, S.R., Solomon, E.I. (1982). Observation of an electric quadrupole transition in the x-ray absorption spectrum of a Cu(II) complex. Chemical Physics Letters, 88, 595-598. DOI: 10.1016/0009-2614(82)85016-1
  49. Kosugi, N., Kondoh, H., Tajima, H., Kuroda, H. (1989). Cu K-edge XANES of (La1-xSrx)2CuO4, YBa2Cu3Oy and related Cu oxides. valence, structure and final-state effects on 1s-4pπ and 1s-4pσ absorption. Chemical Physics, 135, 149-160. DOI: 10.1016/0301-0104(89)87014-4
  50. Basu, S., Sen, A.K. (2020). Dehydration of glycerol with silica–phosphate-supported copper catalyst. Research on Chemical Intermediates, 46, 3545-3568. DOI: 10.1007/s11164-020-04161-4
  51. Sun, D., Yamada, Y., Sato, S. (2015). Efficient production of propylene in the catalytic conversion of glycerol. Applied Catalysis B: Environmental, 174-175, 13-20. DOI: 10.1016/j.apcatb.2015.02.022
  52. Otomo, R., Yamaguchi, C., Iwaisako, D., Oyamada, S., Kamiya, Y. (2019). Selective dehydration of 1,2-propanediol to propanal over boron phosphate catalyst in the presence of steam. ACS Sustainable Chemistry & Engineering, 7, 3027-3033. DOI: 10.1021/acssuschemeng.8b04594

Last update:

No citation recorded.

Last update:

No citation recorded.