Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
BibTex Citation Data :
@article{BCREC8125, author = {Andri Kumoro and Diah Retnowati and Ratnawati Ratnawati}, title = {Kinetics of Starch Degradation during Extrusion Cooking of Steady State Flow Konjac (Amorphophallus oncophyllus) Tuber Flour in a Single Screw Extruder}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {15}, number = {2}, year = {2020}, keywords = {dry process; extrusion cooking; starch; reaction kinetics; glucomannan; refining}, abstract = { The presence of glucomannan in Konjac (Amorphophallus oncophyllus) tuber flour has promoted its various applications, especially in the food, drink, drug delivery and cosmetics. Starch is the main impurity of Konjac tuber flour. Although the common wet refining method may result in a high purity Konjac tuber flour, it is very tedious, time consuming and costly. This research aimed to study the kinetics of starch degradation in the extrusion cooking process of dry refining method to produce high quality Konjac tuber flour. In this research, Konjac tuber flour with 20% (w/w) moisture was extruded in a single screw extruder by varying screw speeds (50, 75, 100, 125, 150 and 175 rpm) and barrel temperatures (353, 373, 393, 413 and 433 K). The results showed that the starch extrusion cooking obeys the first reaction order. The reaction rate constant could be satisfactorily fitted by Arrhenius correlation with total activation energy of 6191 J.mol − 1 and pre-exponential factor of 2.8728×10 − 1 s − 1 . Accordingly, thermal degradation was found to be the primary cause of starch degradation, which shared more than 99% of the energy used for starch degradation. Based on mass Biot number and Thiele modulus evaluations, chemical reaction was the controlling mechanism of the process. The results of this research offer potential application in Konjac tuber flour refining process to obtain high quality flour product. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {591--602} doi = {10.9767/bcrec.15.2.8125.591-602}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/8125} }
Refworks Citation Data :
The presence of glucomannan in Konjac (Amorphophallus oncophyllus) tuber flour has promoted its various applications, especially in the food, drink, drug delivery and cosmetics. Starch is the main impurity of Konjac tuber flour. Although the common wet refining method may result in a high purity Konjac tuber flour, it is very tedious, time consuming and costly. This research aimed to study the kinetics of starch degradation in the extrusion cooking process of dry refining method to produce high quality Konjac tuber flour. In this research, Konjac tuber flour with 20% (w/w) moisture was extruded in a single screw extruder by varying screw speeds (50, 75, 100, 125, 150 and 175 rpm) and barrel temperatures (353, 373, 393, 413 and 433 K). The results showed that the starch extrusion cooking obeys the first reaction order. The reaction rate constant could be satisfactorily fitted by Arrhenius correlation with total activation energy of 6191 J.mol−1 and pre-exponential factor of 2.8728×10−1 s−1. Accordingly, thermal degradation was found to be the primary cause of starch degradation, which shared more than 99% of the energy used for starch degradation. Based on mass Biot number and Thiele modulus evaluations, chemical reaction was the controlling mechanism of the process. The results of this research offer potential application in Konjac tuber flour refining process to obtain high quality flour product. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)