Kinetics of Starch Degradation during Extrusion Cooking of Steady State Flow Konjac (Amorphophallus oncophyllus) Tuber Flour in a Single Screw Extruder

*Andri Cahyo Kumoro orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Indonesia
Diah Susetyo Retnowati  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Indonesia
Ratnawati Ratnawati  -  Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Indonesia
Received: 11 Jun 2020; Revised: 19 Jul 2020; Accepted: 20 Jul 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The presence of glucomannan in Konjac (Amorphophallus oncophyllus) tuber flour has promoted its various applications, especially in the food, drink, drug delivery and cosmetics. Starch is the main impurity of Konjac tuber flour. Although the common wet refining method may result in a high purity Konjac tuber flour, it is very tedious, time consuming and costly. This research aimed to study the kinetics of starch degradation in the extrusion cooking process of dry refining method to produce high quality Konjac tuber flour. In this research, Konjac tuber flour with 20% (w/w) moisture was extruded in a single screw extruder by varying screw speeds (50, 75, 100, 125, 150 and 175 rpm) and barrel temperatures (353, 373, 393, 413 and 433 K). The results showed that the starch extrusion cooking obeys the first reaction order. The reaction rate constant could be satisfactorily fitted by Arrhenius correlation with total activation energy of 6191 J.mol1 and pre-exponential factor of 2.8728×101 s1. Accordingly, thermal degradation was found to be the primary cause of starch degradation, which shared more than 99% of the energy used for starch degradation. Based on mass Biot number and Thiele modulus evaluations, chemical reaction was the controlling mechanism of the process. The results of this research offer potential application in Konjac tuber flour refining process to obtain high quality flour product. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: dry process; extrusion cooking; starch; reaction kinetics; glucomannan; refining

Article Metrics:

  1. Chua, M., Baldwin, T.C., Hocking, T.J., Chan, K. (2010). Traditional Uses and Potential Health Benefits of Amorphophallus Konjac K. Koch ex N. E. Br. Journal of Ethnopharmacology, 12(2), 268–278. DOI: 10.1016/j.jep.2010.01.021
  2. Tatirat, O., Charoenrein, S. (2011). Physicochemical Properties of Konjac Glucomannan Extracted from Konjac Flour by a Simple Centrifugation Process. LWT – Food Science and Technology, 44(10), 2059–2063. DOI: 10.1016/j.lwt.2011.07.019
  3. Takigami, S. (2000). Handbook of Hydrocolloids. New York, USA: Woodhead Publishing Limited.
  4. Yoshimura, M., Takaya, T., Nishinari, K. (1998). Rheological Studies on Mixture of Corn Starch and Konjac-glucomannan. Carbohydrate Polymers, 35(1–2), 71–79. DOI: 10.1016/S0144-8617(97)00232-4
  5. Davidson, V. J., Paton, D., Diosady, L. L., Rubin, L. J. (1984). A Model for Mechanical Degradation of Wheat Starch in a Single Screw Extruder. Journal of Food Science, 49(4), 1154–1157. DOI: 10.1111/j.1365-2621.1984.tb10416.x
  6. Impaprasert, R., Borompichaichartkul, C., Srzednicki, G. (2014). A New Drying Approach to Enhance Quality of Konjac Glucomannan Extracted from Amorphophallus muelleri. Drying Technology, 32, 851–860. DOI: 10.1080/07373937.2013.871728
  7. Hashimoto, J.M., Grossmann, M.V.E. (2003). Effects of Extrusion Conditions on Quality of Cassava Bran/Cassava Starch Extrudates. International Journal of Food Science and Technology, 38, 511–517. DOI: 10.1046/j.1365-2621.2003.00700.x
  8. Offiah, V., Kontogiorgos, V., Falade, K.O. (2019). Extrusion Processing of Raw Food Materials and By-products: A Review. Critical Reviews in Food Science and Nutrition, 59(18), 2979–2998. DOI: 10.1080/10408398.2018.1480007
  9. Aprianita, A., Vasiljevic, T., Bannikova, A., Kasapis, S. (2014). Physicochemical Properties of Wheat-Canna and Wheat-Konjac Composite Flours. Journal of Food Science and Technology, 51, 1784–1794. DOI: 10.1007/s13197-012-0696-x
  10. Moad, G. (2011). Chemical Modification of Starch by Reactive Extrusion. Progress in Polymer Science, 36(2), 218–237. DOI: 10.1016/j.progpolymsci.2010.11.002
  11. Navale, S.A., Swami, S.B., Thakor, N.J. (2015). Extrusion Cooking Technology for Foods: A Review. Journal of Ready to Eat Food, 2(3), 66–80.
  12. Adekola, K.A. (2016). Engineering Review Food Extrusion Technology and Its Application. Journal of Food Science and Engineering, 6, 149–168. DOI: 10.17265/2159-5828/2016.03.005
  13. Zhao, X., Wei, Y., Wang, Z., Chen, F., Ojokoh, A.O. (2011). Reaction Kinetics in Food Extrusion: Methods and Results. Critical Reviews in Food Science and Nutrition, 51(9), 835–854. DOI: 10.1080/10408398.2010.483023
  14. Singh, S., Gamlath, S., Wakeling, L. (2007). Nutritional Aspects of Food Extrusion: A Review. International Journal of Food Science and Technology, 42(8), 916–929. DOI: 10.1111/j.1365-2621.2006.01309.x
  15. Riaz, M., Asif, M., Ali, R. (2009). Stability of Vitamins during Extrusion. Critical Reviews in Food Science and Nutrition, 49(4), 361–368. DOI: 10.1080/10408390802067290
  16. Cai, W., Diosady, L.L. (1993). Model for Gelatinization of Wheat Starch in a Twin-Screw Extruder. Journal of Food Science, 58(4), 872–875, 887. DOI: 10.1111/j.1365-2621.1993.tb09380.x
  17. Wang, L.J., Ganjyal, G.M., Jones, D.D., Weller, C.L., Hanna, M.A. (2004). Finite Element Modeling of Fluid Flow, Heat Transfer, and Melting of Biomaterials in a Single-Screw Extruder. Journal of Food Science, 69(5), E212–E223. DOI: 10.1111/j.1365-2621.2004.tb10712.x
  18. Puswatien, P., Siong, T.E., Kantasubrata, J., Craven, G., Feliciano, R.R., Judprasong, K. (2011). The ASEAN Manual of Food Analysis,
  19. Phutthamonthon, Thailand: Institute of Nutrition Mahidol University.
  20. AOAC. (1999). Official Methods of Analysis. Gaithersburg, USA: AOAC International.
  21. Parry, J.M. (2011). glucomannan Food Stabilisers, Thickeners and Gelling Agents, United Kingdom, John Willey & Sons, Ltd..
  22. AOAC. (2005). Official Methods of Analysis. Arlington, USA: AOAC International.
  23. Cuesta, G., Suarez, N., Bessio, M.I., Ferreira, F., Massaldi, H. (2003). Quantitative Determination of Pneumococcal Capsular Polysaccharide Serotype 14 using a Modification of Phenol-Sulfuric Acid Method, Journal of Microbiological Methods, 52(1), 69–73. DOI: 10.1016/S0167-7012(02)00151-3
  24. Chua, M., Chan, K., Hocking, T.J., Williams, P.A., Perry, C.J., Baldwin, T.C. (2012). Methodologies for the Extraction and Analysis of Konjac Glucomannan from Corms of Amorphophallus Konjac K. Koch. Carbohydrate Polymers, 87(3), 2202–2210. DOI: 10.1016/j.carbpol.2011.10.053
  25. Berrios, J.D.J., Morales, P., Cámara, M., Sánchez-Mata, M.C. (2010). Carbohydrate Composition of Raw and Extruded Pulse Flours. Food Research International, 43(2), 531–536. DOI: 10.1016/j.foodres.2009.09.035
  26. Taggart, P. (2004). Starch as an Ingredient: Manufacture and applications. In A. C. Eliasson (Ed.), Starch in Foods: Structure, Function and Applications (pp. 363–392). Cambridge, London: Woodhead Publishing.
  27. Lund, D.B., Wirakartakusumah, M. (1984). A Model for Starch Gelatinization Phenomena. In: Engineering and Food Vol. 1 Engineering Science in the Food Industry, ed. B. M. McKenna. Elsevier Applied Science Publishers, London, pp. 425 – 431.
  28. Bhattacharya, M., Hanna, M.A. (1987). Kinetics of Starch Gelatinization during Extrusion Cooking, Journal of Food Science, 52(3), 764–766. DOI: 10.1111/j.1365-2621.1987.tb06722.x
  29. Lai, L.S., Kokini, J.L. (1991). Physicochemical Changes and Rheological Properties of Starch during Extrusion. Biotechnology Progress, 7(3), 251–266. DOI: 10.1021/bp00009a009
  30. Burros, B.C., Young, L.A., Carroad, P.A. (1987). Kinetics of Corn Meal Gelatinization at High Temperature and Low Moisture. Journal of Food Science, 52(5), 1372–1376. DOI: 10.1111/j.1365-2621.1987.tb14085.x
  31. Diosady, L.L., Paton, D., Rubin, L.J., Athanassoulias, C. (1985). Degradation of Wheat Starch in a Single-Screw Extruder: Mechano-kinetics Breakdown of Cooked Starch. Journal of Food Science, 50(6), 1697–1699. DOI: 10.1111/j.1365-2621.1985.tb10568.x
  32. Zheng, X., Wang, S.S. (1994). Shear Induced Starch Conversion during Extrusion. Journal of Food Science, 59(5), 1137–1143. DOI: 10.1111/j.1365-2621.1994.tb08210.x
  33. Biliaderis, C.G., Maurice, T.J., Vose, J.R. (1980). Starch Gelatinization Phenomena Studied by Differential Scanning Calorimetry. Journal of Food Science, 45(6), 1669–1673. DOI: 10.1111/j.1365-2621.1980.tb07586.x
  34. Qu, D., Wang, S.S. (2002). Modeling Extrusion Conversion of Starch in a Single-Screw Extruder. Journal of the Chinese Institute of Chemical Engineers, 33(1), 33 –51.
  35. Wang, S.S., Chiang, W.C., Zheng, X.G., Yeh, A.I., Zhao, B., Cho, M.H. (1992). Application of an Energy Equivalent Concept to the Studies of the Kinetics of Starch Conversion during Extrusion. In Kokini, J.L., Ho, C.T., Karwe, M.V. (Editors.) Food Extrusion Science and Technology. New York: Marcel Dekker, Inc.
  36. Comite, A., Bottino, A., Capannelli, G., Costa, C., Di Felice, R. (2013). Multi-phase catalytic membrane reactors. In Basile, A. (Editor.) Handbook of Membrane Reactors. New York: Woodhead Publishing Series in Energy, Inc. pp. 152-187. DOI: 10.1533/9780857097347.1.152
  37. Thorell, A., Wadsö, L. (2018). Determination of External Mass Transfer Coefficients in Dynamic Sorption (DVS) Measurements. Drying Technology, 36(3), 332–340. DOI: 10.1080/07373937.2017.1331239
  38. Karathanos, V.T., Vagenas, G.K., Saravacos, G.D. (1991). Water Diffusivity in Starches at High Temperatures and Pressures. Biotechnology Progress, 7(2), 178–184. DOI: 10.1021/bp00008a013
  39. Collins, G.P., Denson, C.D., Astarita, G. (1985). Determination of Mass Transfer Coefficients for Bubble-Free Devolatilization of Polymeric Solutions in Twin-Screw Extruders. AIChE Journal, 31(8), 1288–1296, DOI: 10.1002/aic.690310807
  40. Doran, P.M. (2013). Heterogeneous Reactions. In Pauline M Doran (Editor) Bioprocess Engineering Principles. Amsterdam: Academic Press.
  41. Ibanoglu, S., Ainsworth, P. (1997). Kinetics of Starch Gelatinization during Extrusion of Tarhana, a Traditional Turkish Wheat flour-Yogurt Mixture. International Journal of Food Sciences and Nutrition, 48(3), 201–204. DOI: 10.3109/09637489709012593
  42. Hellman, N.N., Fairchild, B., Senti, F.R. (1954). The Bread Staling Problem. Molecular Organization of Starch Upon Aging of Concentrated Starch Gels at Various Moisture Levels. Cereal Chemistry, 31, 495–505.
  43. Burt, D.J., Russel, P.L. (1983). Gelatinization of Low Water Content Wheat Starch-Water Mixtures. Starch/Starke, 35(1983), 354-360. DOI: 10.1002/star.19830351006
  44. Wang, S.S., Chiang, W.C., Yeh, A.I., Zhao, B., Kim, I.H. (1989). Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents. Journal of Food Science, 54(5), 1298–1301, 1326. DOI: 10.1111/j.1365-2621.1989.tb05977.x
  45. van der Goot, A.J., van den Einde, R.M. (2011). Thermomechanical Processing: Starch. In: Dennis R. Heldman, Carmen I. Moraru (Editor). Encyclopedia of Agricultural, Food and Biological Engineering. Boca Raton, Florida: CRC Press. 1722 –1725. DOI: 10.1081/E-EAFE2-120045621
  46. Senouci, A., Smith, A.C. (1988). An experimental study of food melt rheology. I. Shear Viscosity using a Slit Die Viscometer and a Capillary Rheometer. Rheologica Acta, 27(5), 546-554. DOI: 10.1007/BF0132935
  47. Coral, D.F., Pineda-G´omez, P., Rosales-Rivera, A., Rodriguez-Garcia, M.E. (2009). Determination of The Gelatinization Temperature of Starch Presented in Maize Flours. Journal of Physics: Conference Series, 167, 012057. DOI: 10.1088/1742-6596/167/1/012057

No citation recorded.