skip to main content

Natural Clay of Pasaman Barat Enriched by CaO of Chicken Eggshells as Catalyst for Biodiesel Production

Department of Chemistry, Andalas University, Jl. Universitas Andalas, Limau Manis, Padang, Indonesia

Received: 9 Jun 2020; Revised: 10 Aug 2020; Accepted: 11 Aug 2020; Published: 28 Dec 2020; Available online: 14 Sep 2020.
Open Access Copyright (c) 2020 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

This study uses broiler chicken eggshells to enhance catalytic activity of clay obtained from Pasaman Barat (West Sumatra, Indonesia) in lab-scale biodiesel production. The eggshell is a source of calcium oxide (CaO) which operates as a catalyst when mixed with the clay (Ca-Clay). Two other catalysts were also prepared as comparisons by 1) heating the clay at 800 oC for 6 hours (P-Clay), 2) mixing the P-Clay with KOH (K-Clay). An X-ray Fluorescence (XRF) showed the elemental composition of Ca-Clay contained Ca, Si, Al, and Fe. An X-ray Diffraction (XRD) showed the formation of highly crystalline CaO in the Ca-Clay with the main peak at 2θ = 37.27o. The Fourier Transform Infra Red (FTIR) spectrum showed an absorption peak in the range of 700-900 cm-1 indicating Ca-O stretching demonstrating successful incorporation of the CaO into the clay. The catalytic activity test showed the Ca-Clay had a higher catalytic performance than P-Clay and K-Clay in terms of the yield of biodiesel produced (73%). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Fulltext View|Download
Keywords: Eggshell; Natural Clay; Heterogeneous catalyst; Biodiesel; natural
Funding: Andalas University under contract contract no. T/60/UN.16.17/PP.IS-KRP2GB/LPPM/2019

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Abdelwahab Emam, E. (2019). Clay adsorption perspective on petroleum refining industry. Industrial Engineering, 2(1), 19. https://doi.org/10.11648/j.ie.20180201.13
  2. Akkari, M., Aranda, P., Ben Rhaiem, H., Ben Haj Amara, A., & Ruiz-Hitzky, E. (2016). ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Applied Clay Science, 131, 131–139. https://doi.org/10.1016/j.clay.2015.12.013
  3. Aroke, U. O., Abdulkarim, A., & Ogunbunka, R. O. (2013). Fourier-transform infrared characterization of kaolin, granite, bentonite and barite. ATBU Journal of Environmental Technology, 6(1), 42–53
  4. Beuntner, N., & Thienel, C. (2015). Properties of calcined lias delta clay- technological effects, physical characteristics and reactivity in cement. In Calcined Clays for Sustainable Concrete (pp. 43–50). https://doi.org/10.1007/978-94-017-9939-3_6
  5. Buasri, A., Chaiyut, N., Loryuenyong, V., Wongweang, C., & Khamsrisuk, S. (2015). Effect of eggshell as a filler on the mechanical properties of flexible polyurethane foam. Sustainable Energy, 1(2), 7–13. https://doi.org/10.12691/rse-1-2-1
  6. Canakci, M., & Gerpen, J. Van. (2007). Biodiesel production from jatropha oil with high free fatty acids. Indian Journal of Natural Products and Resources, 6(6), 498
  7. de Luna, M. D. G., Cuasay, J. L., Tolosa, N. C., & Chung, T. W. (2017). Transesterification of soybean oil using a novel heterogeneous base catalyst: Synthesis and characterization of Na-pumice catalyst, optimization of transesterification conditions, studies on reaction kinetics and catalyst reusability. Fuel, 209(July), 246–253. https://doi.org/10.1016/j.fuel.2017.07.086
  8. Drzal, L. T., Rynd, J. P., & Fort, T. (1983). Effects of calcination on the surface properties of kaolinite. Journal of Colloid And Interface Science, 93(1), 126–139. https://doi.org/10.1016/0021-9797(83)90392-2
  9. Ekeoma, M. O., & Okoye, P. (2016). Anorthite clay formulation as catalyst for bio-diesel production. J. Chem. Soc. Nigeria, 41(2), 130–136
  10. Fauzan, R., Syukri, & Emdeniz. (2012). Optimasi aktifitas katalitik Co(II)- asetonitril yang diamobilisasi pada silika modifikasi dalam reaski transesterifikasi. Journal Kimia Unand, 1(1), 106–113
  11. Hongping, H., Ray, F. L., & Jianxi, Z. (2004). Infrared study of HDTMA+ intercalated montmorillonite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 60(12), 2853–2859. https://doi.org/10.1016/j.saa.2003.09.028
  12. Huang, D., Zhou, H., & Lin, L. (2011). Biodiesel: An alternative to conventional fuel. Energy Procedia, 16(PART C), 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287
  13. Hwidi, R. S., Izhar, T. N. T., Saad, F. N. M., Dahham, O. S., Noriman, N. Z., & Shayfull, Z. (2018). Characterization of quicklime as raw material to hydrated lime: Effect of temperature on its characteristics. AIP Conference Proceedings, 2030(November). https://doi.org/10.1063/1.5066668
  14. Joshi, R. M., & Pegg, M. J. (2007). Flow properties of biodiesel fuel blends at low temperatures. Fuel, 86(1–2), 143–151. https://doi.org/10.1016/j.fuel.2006.06.005
  15. Kwong, T. L., & Yung, K. F. (2015). Heterogeneous alkaline earth metal-transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 5(102), 83748–83756. https://doi.org/10.1039/c5ra13819a
  16. Liu, X., He, H., Wang, Y., Zhu, S., & Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2), 216–221. https://doi.org/10.1016/j.fuel.2007.04.013
  17. Longa-Avello, L., Pereyra-Zerpa, C., Casal-Ramos, J. A., & Delvasto, P. (2017). Study of the calcination proces of two limonitic iron ores between 250 oC and 950 oC. Revista Facultad de Ingeniería, 26(45), 33–45. https://doi.org/10.19053/01211129.v26.n45.2017.6053
  18. Louati, S., Baklouti, S., & Samet, B. (2016). Geopolymers based on phosphoric acid and illito-kaolinitic clay. Advances in Materials Science and Engineering, 2016, 1–7. https://doi.org/10.1155/2016/2359759
  19. Meher, L. C., Vidya Sagar, D., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification - A review. Renewable and Sustainable Energy Reviews, 10(3), 248–268. https://doi.org/10.1016/j.rser.2004.09.002
  20. Mukasa-Tebandeke, I. Z., Ssebuwufu, P. J. M., Nyanzi, S. A., Schumann, A., Nyakairu, G. W. A., Ntale, M., & Lugolobi, F. (2015). The Elemental, mineralogical, IR, DTA and XRD analyses characterized clays and clay minerals of central and Eastern Uganda. Advances in Materials Physics and Chemistry, 05(02), 67–86. https://doi.org/10.4236/ampc.2015.52010
  21. Nurhayati, Muhdarina, Linggawati, A., Anita, S., & Amri, T. A. (2015). Preparation and characterization of calcium oxide heterogeneous catalyst derived from anadara granosa shell for biodiesel synthesis. KnE Engineering, 2016, 1–8. https://doi.org/10.18502/keg.v1i1.494
  22. Nuripati, N. (2019). Lempung Limau Manis: Modifikasi, karakterisasi, dan aktivitas katalitiknya. Universitas Andalas, Padang
  23. Olutoye, M., Adeniyi, O. D., & Yusuff, A. S. (2016). Synthesis of biodiesel from palm kernel oil using mixed clay-eggshell heterogeneous catalysts. Iranica Journal of Energy and Environment, 7(3), 308–314. https://doi.org/10.5829/idosi.ijee.2016.07.03.14
  24. Pandiangan, K. D., Jamarun, N., Arief, S., Simanjuntak, W., & Rilyanti, M. (2016). The effect of calcination temperatures on the activity of CaO and CaO/SiO2 heterogeneous catalyst for transesterification of rubber seed oil in the presence of coconut oil as a co-reactant. Oriental Journal of Chemistry, 32(6), 3021–3026. https://doi.org/10.13005/ojc/320622
  25. Qtaitat, M. A., & Al-Trawneh, I. N. (2005). Characterization of kaolinite of the Baten El-Ghoul region/south Jordan by infrared spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 61, 1519–1523. https://doi.org/10.1016/j.saa.2004.11.008
  26. Rezende, J. C. T., Ramos, V. H. S., Oliveira, H. A., Oliveira, R. M. P. B., & Jesus, E. (2018). Removal of Cr(VI) from aqueous solutions using clay from Calumbi geological formation, N. Sra. Socorro, SE State, Brazil. Materials Science Forum, 912, 1–6. https://doi.org/10.4028/www.scientific.net/msf.912.1
  27. Sari FN, N., Syukri, & Zulhadjri. (2013). Penentuan kondisi optimum aktivitas katalitik mangan(II) yang digrafting pada silika modifikasi. Jurnal Kimia Unand, 2(1), 46–53
  28. Schroeder, P. (2002). Infrared spectroscopy in clay science. CMS Workshop Lectures, 11(October), 181–206. Retrieved from http://www.gly.uga.edu/Schroeder/11Schroeder.pdf
  29. Seprianti, S. (2017). Pemanfaatan tanah lempung alami (Clay) Limau Manis sebagai support katalis asam, karakterisasi dan aplikasi katalitiknya. Universitas Andalas, Padang
  30. Setiadji, S., Sundari, C. D. D., Munir, M., & Fitriyah, S. (2018). Synthesis of solid catalyst from egg shell waste and clay for biodiesel production. Journal of Physics: Conference Series, 1013(1). https://doi.org/10.1088/1742-6596/1013/1/012199
  31. Soetaredjo, F. E., Ayucitra, A., Ismadji, S., & Maukar, A. L. (2011). KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 53(2), 341–346. https://doi.org/10.1016/j.clay.2010.12.018
  32. Suryaputra, W., Winata, I., Indraswati, N., & Ismadji, S. (2013). Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renewable Energy, 50, 795–799. https://doi.org/10.1016/j.renene.2012.08.060
  33. Thomas, R. E. (2010). High temperature processing of kaolinitic materials. The University of Birmingham
  34. Tomic, Z., Antic-Mladenovic, S., Babic, B., Poharc-Logar, V., Djordjevic, A., & Cupac, S. (2012). Modification of smectite structure by sulfuric acid and characteristics of the modified smectite. Journal of Agricultural Sciences, Belgrade, 56(1), 25–35. https://doi.org/10.2298/jas1101025t
  35. Unuabonah, E. I., Günter, C., Weber, J., Lubahn, S., & Taubert, A. (2013). Hybrid clay: A new highly efficient adsorbent for water treatment. ACS Sustainable Chemistry and Engineering, 1(8), 966–973. https://doi.org/10.1021/sc400051y
  36. Wu, H., Zhang, J., Liu, Y., Zheng, J., & Wei, Q. (2014). Biodiesel production from Jatropha oil using mesoporous molecular sieves supporting K2SiO3 as catalysts for transesterification. Fuel Processing Technology, 119, 114–120. https://doi.org/10.1016/j.fuproc.2013.10.021
  37. Yusuff, A. S., Adeniyi, O. D., Olutoye, M. A., & Akpan, U. G. (2017). A Review on application of heterogeneous catalyst in the production of biodiesel from vegetable oils. Journal of Applied Science & Process Engineering, 4(2), 142–157. https://doi.org/10.1177/1077546316636361
  38. Yusuff, A. S., Gbadamosi, A. O., Adeniyi, O. D., Olutoye, M. A., & Akpan, U. G. (2018). A comparison of the effects of preparation variables on activity of composite anthill-chicken eggshell catalyst for biodiesel production. Journal of Sustainability Science and Management, 13(1)
  39. Zhou, C. H. (2011). An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Applied Clay Science, 53(2), 87–96. https://doi.org/10.1016/j.clay.2011.04.016

Last update:

No citation recorded.

Last update: 2021-09-19 01:05:07

  1. Co-Solvent Free Electrochemical Synthesis of Biodiesel Using Graphite Electrode and Waste Concrete Heterogeneous Catalyst: Optimization of Biodiesel Yield

    Wicaksono W.P.. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (1), 2021. doi: 10.9767/bcrec.16.1.10310.179-187
  2. Synthesis of graphene oxide enriched natural kaolinite clay and its application for biodiesel production

    Syukri S.. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.32915