skip to main content

Direct Synthesis of Highly Crystalline ZSM-5 from Indonesian Kaolin

1Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, , Indonesia

2Kampus C Unair, Jl. Mulyorejo, Surabaya, 60115, Indonesia

3Department of Chemistry, Institut Teknologi Sepuluh Nopember, Keputih, Surabaya, 60115, Indonesia

Received: 21 Nov 2016; Revised: 30 Dec 2016; Accepted: 18 Feb 2017; Available online: 8 May 2017; Published: 1 Aug 2017.
Editor(s): Istadi Istadi, Yuly Kusumawati
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Direct synthesis of ZSM-5 from Indonesian kaolin without calcination for the formation of metakaolin was done through the addition of an alkaline solution (sodium fluoride and sodium hydroxide) and the fusion using sodium hydroxide. Crystallization was conducted through hydrothermal method at 80 °C for four days. XRD diffractogram and FTIR spectra showed that the addition of sodium fluoride solution in the ratio Si/Al = 100 could produce highly crystalline ZSM-5, whereas the use of a sodium hydroxide solution and fusion process did not produce the crystalline ZSM-5. 

Fulltext View|Download
Keywords: synthesis of ZSM-5; kaolin; without calcination; sodium fluoride

Article Metrics:

  1. Niwa, M., Katada, N., and Okumura, K. (2010). Characterization and Design of Zeolite Catalysts. Springer Heidelberg Dordrecht
  2. Hagen, J., (2006). Industrial Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA
  3. Bellussi, G., Carati, A., Millini, R., (2010). Industrial Potential of Zeolites. In Zeolites and Catalysis Synthesis, Reactions and Applications, 473-478. Wiley-VCH Verlag GmbH & Co. KGaA
  4. Zhu, H., Liu, Z., Kong, D., Wang, Y., Yuan, X., Xie, Z., (2009). Synthesis of ZSM-5 with Intracrystal or Intercrystal Mesopores by Polyvinyl Butyral Templating Method. Journal of Colloid and Interface Science, 331: 432-438
  5. Ding, J., Liu, H., Yuan, P., Shi, G., Bao, X., (2012). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5: 1-13
  6. Liu, B., Li, C., Ren, Y.,Tan, Y., Xi, H., Qian, Y. (2012). Direct Synthesis of Mesoporous ZSM-5 Zeolite by a Dual-Functional Surfactant Approach. Chemical Engineering Journal, 210: 96-102
  7. Prasetyoko D., Ayunanda, N., Fansuri, H., Hartanto, D., Ramli, Z. (2012). Phase Transformation of Rice Husk Ash in the Synthesis of ZSM-5 without Organic Template. ITB Journal of Science, 44A(3): 250-262
  8. Atta, A.Y., Ajayi, O.A., Adefila, S.S. (2007). Synthesis of Faujasite Zeolites from Kankara Clay. Journal of Applied Sciences Research, 3: 1017-1021
  9. Pan, F., Lu, X., Wang, Y., Chen, S., Wang, T., Yan, Y. (2014). Organic Template-Free Synthesis of ZSM-5 Zeolite from Coal-Series Kaolinite. Materials Letters, 115: 5-8
  10. Hartati, H., Widati, A., Setyawati, H., Fitri, S., (2016). Preparation of Hierarchical ZSM-5 from Indonesian Kaolin by Adding Silica. Chemistry & Chemical Technology, 10(1): 87- 90
  11. Aguilar-Mamani, W., García, G., Hedlund, J., Mouzon, J. (2014). Comparison between Leached Metakaolin and Leached Diatomaceous Earth as Raw Materials for the Synthesis of ZSM-5. SpringerPlus, 3: 292-302
  12. Ye, L., Xianbo, Y., Lei, Q., Jingdai, W., Yongrong, Y. (2010). In-situ Synthesis of ZSM-5 Zeolite from Metakaolin/Spinel and Its Catalytic Performance on Methanol Conversion. China Petroleum Processing and Petrochemical Technology, 12(1): 23-28
  13. Ríos, C.A., Williams, C.D., Fullen, M.A. (2009). Nucleation and Growth History of Zeolite LTA Synthesized from Kaolinite by Two Different Methods. Applied Clay Science, 42: 446-454
  14. Eimer, G.A., Diaz, I., Sastre, E., Casuscelli, G.S., Crivello, M.E., Herrero, E.R, Periente, J. (2008). Mesoporous Titanosilicates Synthesized from TS-1 Precursors with Enhanced Catalytic, Applied Catalysis A: General, 34: 77-86
  15. Gonçalves, M.L., Dimitrov, L.D., Jordão, M.H., Wallau, M., Urquieta-González, E.A. (2008). Synthesis of Mesoporous ZSM-5 by Crystallisation of Aged Gels in the Presence of Cetyltrimethylammonium Cations. Catalysis Today, 133: 69-79
  16. Zhao, H., Deng, Y., Harsh, J.B., Flury, M., Boyle, J.S. (2004). Alteration of Kaolinite to Cancrinite and Sodalite by Simulated Hanford Tank Waste and Its Impact on Cesium Retention. Clays and Clay Minerals, 52(1): 1-13
  17. Abrishamkar, M., Kahkeshi, F.B., (2013). Synthesis and Characterization of Nano-ZSM-5 Zeolite and Its Application for Electrocatalytic Oxidation of Formaldehyde over Modified Carbon Paste Electrode with Ion Exchanged Synthesized Zeolite in Alkaline Media. Microporous and Mesoporous Materials, 167: 51-54
  18. Corma, A., (2004). Towards a Rationalization of Zeolite and Zeolitic Materials Synthesis. Studies in Surface Science and Catalysis, 154(1): 25-40

Last update:

No citation recorded.

Last update:

No citation recorded.