skip to main content

Kinetics of Oxidative Depolymerization of κ-carrageenan by Ozone

Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50239, Indonesia

Received: 21 Nov 2016; Revised: 27 Jan 2017; Accepted: 18 Feb 2017; Available online: 8 May 2017; Published: 1 Aug 2017.
Editor(s): Istadi Istadi, Yuly Kusumawati
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Depolymerization kinetics of κ-carrageenan by ozone treatment has been studied at various pHs and times. The purified κ-carrageenan with the initial molecular weight of 271 kDa was dispersed in water to form (1 % w/v) solution. Ozone with 80±2 ppm concentration and constant flow rate of 3 L.min-1 was bubbled into the κ-carrageenan solution. The experiments were conducted at pH of 3, 7, and 10 at     different times (5, 10, 15, and 20 minutes) of ozonation. The viscosity of the solution was measured   using Ubbelohde capillary viscometer, which was then used to find the number-average molecular weight by Mark-Houwink equation. The number-average molecular weight data was treated using zero, first, and the second-order reaction kinetics model, to obtain the kinetics of κ-carrageenan depolymerization. The depolymerization is assumed to occur by random scission. The results show that the kinetics rate constant of κ-carrageenan depolymerization is higher at lower pHs. The second-order model is more suitable for describing the kinetics of depolymerization of κ-carrageenan by ozonation process. The rate constants for the second-order kinetics model are 5.45×10-4 min-1, 1.27×10-4 min-1, and 7.21×10-5 min-1 for pH 3, 7, and 10, respectively. The actual values of reaction order under acid and    alkali conditions are ranging from 1.88 to 1.90. 

Fulltext View|Download
Keywords: κ-carrageenan; Ozone; Depolymerization; Kinetics

Article Metrics:

  1. Necas, J., Bartosikova, L. (2013). Carrageenan: A Review. Veterinarni Medicina, 58(4): 187-205
  2. Jiao, G., Yu, G., Zhang, J., Ewart, H.S. (2011). Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Marine Drugs, 9(2): 196-223
  3. Campo, V.L., Kawano, D.F., Silva, D.B., Carvalho, I. (2009). Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis - A Review. Carbohydrate Polymers, 77: 167-180
  4. Bixler, H.J., Porse, H. (2010). A Decade of Change in the Seaweed Hydrocolloids Industry. Journal of Applied Phycology. 23: 321-335
  5. Prajapati, V.D., Maheriya, P.M., Jani, G.K., Solanki, H.K. (2014). Carrageenan: A Natural Seaweed Polysaccharide and Its Applications - A Review. Carbohydrate Polymers, 105: 97-112
  6. Wang, W., Zhang, P., Yua, G.L., Li, C.X., Hao, C., Qi, X., Zhang, L.J., Guan, H.S. (2012). Preparation and Anti-Influenza A Virus Activity of κ-Carrageenan Oligosaccharide and Its Sulphated Derivatives. Food Chemistry, 133(3): 880-888
  7. Wijesekara, I., Pangestuti, R., Kim, S.K. (2011). Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydrate Polymers, 84(1): 14-21
  8. Gomez-Ordonez, E., Jimenez-Escrig, A., Rupérez, P. (2014). Bioactivity of Sulfated Polysaccharides from the Edible Red Seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 3(1): 29-40
  9. de Araújo, C.A., Noseda, M.D., Cipriani, T.R., Goncalves, A.G., Duarte, M.E.R., Ducatti, D.R.B. (2013). Selective Sulfation of Carrageenans and the Influence of Sulfate Regiochemistry on Anticoagulant Properties. Carbohydrate Polymers, 91(2): 483-491
  10. Silva, F.R.F., Dore, C.M.P.G., Marques, C.T., Nascimento, M.S., Benevides, N.M.B., Rocha, H.A.O., Chavante, S.F., Leite, E.L. (2010). Anticoagulant Activity, Paw Edema and Pleurisy Induced Carrageenan: Action of Major Types of Commercial Carrageenan. Carbohydrate Polymers, 79: 26-33
  11. Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. (2000). Preparation of O -Acylated Low-Molecular-Weight Carrageenans with Potent Anti-HIV Activity and Low Anticoagulant Effect. Carbohydrate Polymers, 41: 115-120
  12. Yao, Z., Wu, H., Zhang, S., Du, Y. (2014). Enzymatic Preparation of κ-Carrageenan Oligo-saccharides and their Anti-Angiogenic Activity. Carbohydrate Polymers, 101: 359-367
  13. Haijin, M., Xiaolu, J., Huashi, G. (2003). A Carrageenan Derived Oligosaccharide Prepared by Enzymatic Degradation Containing Anti-Tumor Activity. Journal of Applied Phycology, 15(4): 297-303
  14. Raman, R., Doble, M. (2015). κ-Carrageenan from Marine Red Algae, Kappaphycus Alvarezii – A Functional Food to Prevent Colon Carcinogenesis. Journal of Functional Foods, 15: 354-364
  15. Kalitnik, A.A., Barabanova, A.O.B., Nagorkaya, V.P., Reunov, A.V., Glazunov, V.P., Solov’eva, T.F., Yermak, I.M. (2013). Low Molecular Weight Derivatives of Different Carrageenan Types and their Antiviral Activity. Journal of Applied Phycology, 25(1): 65-72
  16. Chiu, Y.H., Chan, Y.L., Tsai, L.W., Li, T.L., Wu, C.J. (2012). Prevention of Human Enterovirus 71 Infection by kappa Carrageenan. Antiviral Research, 95(2): 128-134
  17. de Souza, L.A.R., Dore, C.M.P.G., Castro, A.J.G., de Azevedo, T.C.G., de Oliveira, M.T.B., Moura, M.F.V., Benevides, N.M B., Leite, E.L. (2012). Galactans from the Red Seaweed Amansia multifida and their Effects on Inflammation, Angiogenesis, Coagulation and Cell Viability. Biomedicine & Preventive Nutrition, 2(3): 154-162
  18. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z. (2005). Antioxidant Activity of Different Sulfate Content Derivatives of Polysaccharide Extracted from Ulva Pertusa (Chlorophyta) In Vitro. International Journal of Biological Macromolecules, 37: 195-199
  19. Pomin, V.H. (2010). Structural and Functional Insights into Sulfated Galactans : a Systematic Review. Glycoconj Journal, 27(1): 1-12
  20. Lai, V.M.F., Lii, C.Y., Hung, W.L., Lu, T.J. (2000). Kinetic Compensation Effect in Depolymerization of Food Polysaccharides. Food Chemistry, 68(3): 319-325
  21. Sun, Y., Yang, B., Wu, Y., Liu, Y., Gu, X., Zhang, H., Wang, C., Cao, H., Huang, L., Wang, Z. (2015). Structural Characterization and Antioxidant Activities of κ-Carrageenan Oligosaccharides Degraded by Different Methods. Food Chemistry, 178: 311-318
  22. Singh, S. K., Jacobson, S.P. (1994). Kinetics of Acid Hydrolysis of κ-Carrageenan as Determined by Molecular Weight (SEC-MALLSRI), Gel Breaking Strength, and Viscosity Measurements. Carbohydrate Polymers, 23: 89-103
  23. Karlsson, A., Singh, S.K. (1999). Acid Hydrolysis of Sulfated Polysaccharides. Desulphation and the Effect on Molecular Mass, 38: 7-15
  24. Yuan, H., Song, J. (2005). Preparation, Structural Characterization and in Vitro Anti-tumor Activity of kappa-Carrageenan Oligosaccharide Fraction from kappaphycus striatum. Journal of Applied Phycology, 17(1): 7-13
  25. Yu, G., Guan, H., Ioanoviciu, A.S., Sikkander, S.A., Thanawiroon, C., Tobacman, J.K., Linhardt, R.J. (2002). Structural Studies on κ-Carrageenan Derived Oligosaccharides. Carbohydrate Research, 337: 433-440
  26. Wu, S.J. (2012). Degradation of κ-Carrageenan by Hydrolysis with Commercial α-Amylase. Carbohydrate Polymers, 89: 394-396
  27. Duan, F., Yu, Y., Liu, Z., Tian, L., Mou, H. (2016). An Effective Method for the Preparation of Carrageenan Oligosaccharides Directly from Eucheuma cottonii using Cellulase and Recombinant κ-Carrageenase. Algal Research, 15: 93-99
  28. Zhou, G., Yao, W., Wang, C. (2006). Kinetics of Microwave Degradation of λ-Carrageenan from Chondrus Ocellatus. Carbohydrate Polymers, 64: 73-77
  29. Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11: 48-58
  30. Taghizadeh, M.T., Abdollahi, R. (2015). Influence of Different Degradation Techniques on the Molecular Weight Distribution of κ-Carrageenan. International Journal of Biochemistry and Biophysics, 3: 25-33
  31. Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. (2000). Preparation of O-Acylated Low-Molecular-Weight Carrageenans with Potent Anti-HIV Activity and Low Anti-coagulant Effect. Carbohydrate Polymers, 41: 115-120
  32. Abad, L.V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fub, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L.S., Aranilla, C.T., DeLaRosa, A.M. (2010). Radiolysis Studies of Aqueous κ-Carrageenan. Nuclear Instruments and Methods in Physics Research Section B, 268(10): 1607-1612
  33. Zúñiga, E., Matsuhiro, B., Mejías, E. (2006). Preparation of a Low-Molecular-Weight Fraction by Free Radical Depolymerization of The Sulfated Galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and Its Anticoagulant Activity. Carbohydrate Polymers, 66: 208-215
  34. Loures, C.C.A., Alcântara, M.A.K., Filho, H.J.I., Teixeira, A.C.S.C., Silva, F.T., Paiva, T.C.B., Samanamud, G.R.L. (2013). Advanced Oxidative Degradation Processes : Fundamentals and Applications. International Review of Chemical Engineering, 5: 102-120
  35. Seydim, Z.B., Greene, A.K. (2004). Use of Ozone in the Food Industry. LWT-Food Science and Technology, 37: 453-460
  36. Sandhu, H.P.S., Manthey, F., Simsek, S. (2012). Ozone Gas Affects Physical and Chemical Properties of Wheat Starch (Triticum Aestivum L). Carbohydrate Polymers, 87: 1261-1268
  37. Seo, S., King, J.M., Prinyawiwatkul, W. (2007). Simultaneous Depolymerization and Decolorization of Chitosan by Ozone Treatment. Journal of Food Science, 72(9): C522-526
  38. Klein, B., Vanier, N.L., Moomand, K., Pinto, V.Z., Colussi, R., da Rosa Zavareze, E., Dias, A.R.G. (2014). Ozone Oxidation of Cassava Starch in Aqueous Solution at Different pH. Food Chemistry, 155: 167-173
  39. Wang, Y., Hollingsworth, R.I., and Kasper, D.L. (1999). Ozonolytic Depolymerization of Polysaccharides in Aqueous Solution. Carbohydrate Research, 319: 141-147
  40. Tiwari, B.K., Muthukumarappan, K., O’Donnell, C.P., Chenchaiah, M., Cullen, P.J. (2008). Effect of Ozonation on the Rheological and Colour Characteristics of Hydrocolloid Dispersions. Food Research International, 41(10): 1035-1043
  41. Chan, H.T., Leh, C.P., Bhat, R., Senan C., Williams P.A., Karim, A. A. (2011). Molecular Structure, Rheological and Thermal Characteristics of Ozone-Oxidized Starch. Food Chemistry, 126: 1019-1024
  42. No, H.K., Kim, S.D., Kim, D.S., Kim, S.K., Meyers, S.P. (1999). Effect of Physical and Chemical Treatment on Chitosan Viscosity, Journal of Chitin Chitosan, 4(4): 177-183
  43. Cataldo, F. (2007). On the Action of Ozone on Gelatin. International Journal of Biological Macromolecules, 41: 210-216
  44. Prajapat, A.L., Gogate, P.R. (2015). Intensification of Degradation of Guar Gum: Comparison of Approaches Based on Ozone, Ultraviolet and Ultrasonic Irradiations. Chemical Engineering and Processing, 98: 165-173
  45. Simoes, R., Castro, J. (2001). Ozone Depolymerization of Polysaccharides in Different Materials. Journal of Pulp and Paper Science, 27 (3): 82-87
  46. Yue, W., Yao, P., Wei, Y., Mo, H. (2008). Synergetic Effect of Ozone and Ultrasonic Radiation on Degradation of Chitosan. Polymer Degradation and Stability, 93: 1814-1821
  47. Chen, Z., Fang, J., Chihhao, F., Shang, C. (2016). Oxidative Degradation of N-Nitrosopyrrolidine by the Ozone/UV Process: Kinetics and Pathways. Chemosphere, 150: 731-739
  48. Dai, Q., Chen, L., Chen, W., Chen, J. (2015). Degradation and Kinetics of Phenoxyacetic Acid in Aqueous Solution by Ozonation. Separation and Purification Technology, 142: 287-292
  49. Agriopoulou, S., Koliadima, A., Karaiskakis, G., Kapolos, J. (2016). Kinetic Study of Aflatoxins Degradation in the Presence of Ozone. Journal Food Control, 61: 221-226
  50. Mbachu, R.A.D., Manley, J. (1981). Degradation of Lignin by Ozone II Molecular Weights and Molecular Weight Distributions of the Alkali-Soluble Degradation Products. Journal of Polymer Science: Polymer Chemistry Edition, 19: 2065-2078
  51. Zhang, R., Yuan, D.X., Liu, B.M. (2015). Kinetics and Products of Ozonation of C.I. Reactive Red 195 in a Semi-Batch Reactor. Chinese Chemical Letters, 26: 93-99
  52. Lucasa, M.S., Peresa, J.A., Lan, B.Y., Puma, G.L. (2009). Ozonation Kinetics of Winery Wastewater in a Pilot-Scale Bubble Column Reactor. Water Research, 43: 1523-1532
  53. Guo, W.Q., Yin, R.L., Zhou, X.J., Du, S.J., Cao, H.O., Yang, S.S., Ren, N.Q. (2015). Sulfamethoxazole Degradation by Ultrasound/Ozone Oxidation Process in Water: Kinetics, Mechanisms, and Pathways. Ultrasonics Sonochemistry, 22: 182-187
  54. Vreeman, H.J., Snoeren, T.H.M., Payens, T.A.J. (1980). Physicochemical Investigation of κ-Carrageenan in the Random State. Biopolymers, 19: 1357-1354
  55. Tanford, C. (1961). Physical Chemistry of Macromolecules. John Wiley & Sons, Inc. New York
  56. Beltran, F.J. (2005). Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Taylor and Francis e-Library
  57. Arias, A., Melo, R., Mariani, S., Zaror, C. (1997). Kinetics of Oxidation Reactions Between Ozone, Lignin and Cellulose. Celulosa Y Papel, 12-17
  58. Abad L.V., Saiki, S., Kudo, H., Muroya, Y., Katsumura, Y., de la Rosa, A.M. (2007). Rate Constants of Reactions of κ-Carrageenan with Hydrated Electron and Hydroxyl Radical. Nuclear Instruments and Methods in Physics Research, 265: 410-413

Last update:

No citation recorded.

Last update:

No citation recorded.