Kinetics of Oxidative Depolymerization of κ-carrageenan by Ozone

*Aji Prasetyaningrum  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50239,, Indonesia
Ratnawati Ratnawati  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50239,, Indonesia
Bakti Jos  -  Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50239,, Indonesia
Received: 21 Nov 2016; Published: 1 Aug 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: The 2nd International Seminar on Chemistry (ISoC 2016) (Surabaya, 26-27 July 2016)
Language: EN
Full Text:
Statistics: 627 395


Depolymerization kinetics of κ-carrageenan by ozone treatment has been studied at various pHs and times. The purified κ-carrageenan with the initial molecular weight of 271 kDa was dispersed in water to form (1 % w/v) solution. Ozone with 80±2 ppm concentration and constant flow rate of 3 L.min-1 was bubbled into the κ-carrageenan solution. The experiments were conducted at pH of 3, 7, and 10 at     different times (5, 10, 15, and 20 minutes) of ozonation. The viscosity of the solution was measured   using Ubbelohde capillary viscometer, which was then used to find the number-average molecular weight by Mark-Houwink equation. The number-average molecular weight data was treated using zero, first, and the second-order reaction kinetics model, to obtain the kinetics of κ-carrageenan depolymerization. The depolymerization is assumed to occur by random scission. The results show that the kinetics rate constant of κ-carrageenan depolymerization is higher at lower pHs. The second-order model is more suitable for describing the kinetics of depolymerization of κ-carrageenan by ozonation process. The rate constants for the second-order kinetics model are 5.45×10-4 min-1, 1.27×10-4 min-1, and 7.21×10-5 min-1 for pH 3, 7, and 10, respectively. The actual values of reaction order under acid and    alkali conditions are ranging from 1.88 to 1.90. Copyright © 2017 BCREC Group. All rights reserved.

Received: 21st November 2016; Revised: 27th January 2017; Accepted: 18th February 2017

How to Cite: Prasetyaningrum, A., Ratnawati, R., Jos, B. (2017). Kinetics of Oxidative Depolymerization of κ-carrageenan by Ozone. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 235-242 (doi:10.9767/bcrec.12.2.805.235-242)


κ-carrageenan; Ozone; Depolymerization; Kinetics

Article Metrics:

  1. Necas, J., Bartosikova, L. (2013). Carrageenan: A Review. Veterinarni Medicina, 58(4): 187-205.
  2. Jiao, G., Yu, G., Zhang, J., Ewart, H.S. (2011). Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Marine Drugs, 9(2): 196-223.
  3. Campo, V.L., Kawano, D.F., Silva, D.B., Carvalho, I. (2009). Carrageenans: Biological Properties, Chemical Modifications and Structural Analysis - A Review. Carbohydrate Polymers, 77: 167-180.
  4. Bixler, H.J., Porse, H. (2010). A Decade of Change in the Seaweed Hydrocolloids Industry. Journal of Applied Phycology. 23: 321-335.
  5. Prajapati, V.D., Maheriya, P.M., Jani, G.K., Solanki, H.K. (2014). Carrageenan: A Natural Seaweed Polysaccharide and Its Applications - A Review. Carbohydrate Polymers, 105: 97-112.
  6. Wang, W., Zhang, P., Yua, G.L., Li, C.X., Hao, C., Qi, X., Zhang, L.J., Guan, H.S. (2012). Preparation and Anti-Influenza A Virus Activity of κ-Carrageenan Oligosaccharide and Its Sulphated Derivatives. Food Chemistry, 133(3): 880-888.
  7. Wijesekara, I., Pangestuti, R., Kim, S.K. (2011). Biological Activities and Potential Health Benefits of Sulfated Polysaccharides Derived from Marine Algae. Carbohydrate Polymers, 84(1): 14-21.
  8. Gomez-Ordonez, E., Jimenez-Escrig, A., Rupérez, P. (2014). Bioactivity of Sulfated Polysaccharides from the Edible Red Seaweed Mastocarpus stellatus. Bioactive Carbohydrates and Dietary Fibre, 3(1): 29-40.
  9. de Araújo, C.A., Noseda, M.D., Cipriani, T.R., Goncalves, A.G., Duarte, M.E.R., Ducatti, D.R.B. (2013). Selective Sulfation of Carrageenans and the Influence of Sulfate Regiochemistry on Anticoagulant Properties. Carbohydrate Polymers, 91(2): 483-491.
  10. Silva, F.R.F., Dore, C.M.P.G., Marques, C.T., Nascimento, M.S., Benevides, N.M.B., Rocha, H.A.O., Chavante, S.F., Leite, E.L. (2010). Anticoagulant Activity, Paw Edema and Pleurisy Induced Carrageenan: Action of Major Types of Commercial Carrageenan. Carbohydrate Polymers, 79: 26-33.
  11. Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. (2000). Preparation of O -Acylated Low-Molecular-Weight Carrageenans with Potent Anti-HIV Activity and Low Anticoagulant Effect. Carbohydrate Polymers, 41: 115-120.
  12. Yao, Z., Wu, H., Zhang, S., Du, Y. (2014). Enzymatic Preparation of κ-Carrageenan Oligo-saccharides and their Anti-Angiogenic Activity. Carbohydrate Polymers, 101: 359-367.
  13. Haijin, M., Xiaolu, J., Huashi, G. (2003). A Carrageenan Derived Oligosaccharide Prepared by Enzymatic Degradation Containing Anti-Tumor Activity. Journal of Applied Phycology, 15(4): 297-303.
  14. Raman, R., Doble, M. (2015). κ-Carrageenan from Marine Red Algae, Kappaphycus Alvarezii – A Functional Food to Prevent Colon Carcinogenesis. Journal of Functional Foods, 15: 354-364.
  15. Kalitnik, A.A., Barabanova, A.O.B., Nagorkaya, V.P., Reunov, A.V., Glazunov, V.P., Solov’eva, T.F., Yermak, I.M. (2013). Low Molecular Weight Derivatives of Different Carrageenan Types and their Antiviral Activity. Journal of Applied Phycology, 25(1): 65-72.
  16. Chiu, Y.H., Chan, Y.L., Tsai, L.W., Li, T.L., Wu, C.J. (2012). Prevention of Human Enterovirus 71 Infection by kappa Carrageenan. Antiviral Research, 95(2): 128-134.
  17. de Souza, L.A.R., Dore, C.M.P.G., Castro, A.J.G., de Azevedo, T.C.G., de Oliveira, M.T.B., Moura, M.F.V., Benevides, N.M B., Leite, E.L. (2012). Galactans from the Red Seaweed Amansia multifida and their Effects on Inflammation, Angiogenesis, Coagulation and Cell Viability. Biomedicine & Preventive Nutrition, 2(3): 154-162.
  18. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z. (2005). Antioxidant Activity of Different Sulfate Content Derivatives of Polysaccharide Extracted from Ulva Pertusa (Chlorophyta) In Vitro. International Journal of Biological Macromolecules, 37: 195-199.
  19. Pomin, V.H. (2010). Structural and Functional Insights into Sulfated Galactans : a Systematic Review. Glycoconj Journal, 27(1): 1-12.
  20. Lai, V.M.F., Lii, C.Y., Hung, W.L., Lu, T.J. (2000). Kinetic Compensation Effect in Depolymerization of Food Polysaccharides. Food Chemistry, 68(3): 319-325.
  21. Sun, Y., Yang, B., Wu, Y., Liu, Y., Gu, X., Zhang, H., Wang, C., Cao, H., Huang, L., Wang, Z. (2015). Structural Characterization and Antioxidant Activities of κ-Carrageenan Oligosaccharides Degraded by Different Methods. Food Chemistry, 178: 311-318.
  22. Singh, S. K., Jacobson, S.P. (1994). Kinetics of Acid Hydrolysis of κ-Carrageenan as Determined by Molecular Weight (SEC-MALLSRI), Gel Breaking Strength, and Viscosity Measurements. Carbohydrate Polymers, 23: 89-103.
  23. Karlsson, A., Singh, S.K. (1999). Acid Hydrolysis of Sulfated Polysaccharides. Desulphation and the Effect on Molecular Mass, 38: 7-15.
  24. Yuan, H., Song, J. (2005). Preparation, Structural Characterization and in Vitro Anti-tumor Activity of kappa-Carrageenan Oligosaccharide Fraction from kappaphycus striatum. Journal of Applied Phycology, 17(1): 7-13.
  25. Yu, G., Guan, H., Ioanoviciu, A.S., Sikkander, S.A., Thanawiroon, C., Tobacman, J.K., Linhardt, R.J. (2002). Structural Studies on κ-Carrageenan Derived Oligosaccharides. Carbohydrate Research, 337: 433-440.
  26. Wu, S.J. (2012). Degradation of κ-Carrageenan by Hydrolysis with Commercial α-Amylase. Carbohydrate Polymers, 89: 394-396.
  27. Duan, F., Yu, Y., Liu, Z., Tian, L., Mou, H. (2016). An Effective Method for the Preparation of Carrageenan Oligosaccharides Directly from Eucheuma cottonii using Cellulase and Recombinant κ-Carrageenase. Algal Research, 15: 93-99.
  28. Zhou, G., Yao, W., Wang, C. (2006). Kinetics of Microwave Degradation of λ-Carrageenan from Chondrus Ocellatus. Carbohydrate Polymers, 64: 73-77.
  29. Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H. (2016). Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bulletin of Chemical Reaction Engineering & Catalysis, 11: 48-58.
  30. Taghizadeh, M.T., Abdollahi, R. (2015). Influence of Different Degradation Techniques on the Molecular Weight Distribution of κ-Carrageenan. International Journal of Biochemistry and Biophysics, 3: 25-33.
  31. Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y. (2000). Preparation of O-Acylated Low-Molecular-Weight Carrageenans with Potent Anti-HIV Activity and Low Anti-coagulant Effect. Carbohydrate Polymers, 41: 115-120.
  32. Abad, L.V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fub, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L.S., Aranilla, C.T., DeLaRosa, A.M. (2010). Radiolysis Studies of Aqueous κ-Carrageenan. Nuclear Instruments and Methods in Physics Research Section B, 268(10): 1607-1612.
  33. Zúñiga, E., Matsuhiro, B., Mejías, E. (2006). Preparation of a Low-Molecular-Weight Fraction by Free Radical Depolymerization of The Sulfated Galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and Its Anticoagulant Activity. Carbohydrate Polymers, 66: 208-215.
  34. Loures, C.C.A., Alcântara, M.A.K., Filho, H.J.I., Teixeira, A.C.S.C., Silva, F.T., Paiva, T.C.B., Samanamud, G.R.L. (2013). Advanced Oxidative Degradation Processes : Fundamentals and Applications. International Review of Chemical Engineering, 5: 102-120.
  35. Seydim, Z.B., Greene, A.K. (2004). Use of Ozone in the Food Industry. LWT-Food Science and Technology, 37: 453-460.
  36. Sandhu, H.P.S., Manthey, F., Simsek, S. (2012). Ozone Gas Affects Physical and Chemical Properties of Wheat Starch (Triticum Aestivum L). Carbohydrate Polymers, 87: 1261-1268.
  37. Seo, S., King, J.M., Prinyawiwatkul, W. (2007). Simultaneous Depolymerization and Decolorization of Chitosan by Ozone Treatment. Journal of Food Science, 72(9): C522-526.
  38. Klein, B., Vanier, N.L., Moomand, K., Pinto, V.Z., Colussi, R., da Rosa Zavareze, E., Dias, A.R.G. (2014). Ozone Oxidation of Cassava Starch in Aqueous Solution at Different pH. Food Chemistry, 155: 167-173.
  39. Wang, Y., Hollingsworth, R.I., and Kasper, D.L. (1999). Ozonolytic Depolymerization of Polysaccharides in Aqueous Solution. Carbohydrate Research, 319: 141-147.
  40. Tiwari, B.K., Muthukumarappan, K., O’Donnell, C.P., Chenchaiah, M., Cullen, P.J. (2008). Effect of Ozonation on the Rheological and Colour Characteristics of Hydrocolloid Dispersions. Food Research International, 41(10): 1035-1043.
  41. Chan, H.T., Leh, C.P., Bhat, R., Senan C., Williams P.A., Karim, A. A. (2011). Molecular Structure, Rheological and Thermal Characteristics of Ozone-Oxidized Starch. Food Chemistry, 126: 1019-1024.
  42. No, H.K., Kim, S.D., Kim, D.S., Kim, S.K., Meyers, S.P. (1999). Effect of Physical and Chemical Treatment on Chitosan Viscosity, Journal of Chitin Chitosan, 4(4): 177-183.
  43. Cataldo, F. (2007). On the Action of Ozone on Gelatin. International Journal of Biological Macromolecules, 41: 210-216.
  44. Prajapat, A.L., Gogate, P.R. (2015). Intensification of Degradation of Guar Gum: Comparison of Approaches Based on Ozone, Ultraviolet and Ultrasonic Irradiations. Chemical Engineering and Processing, 98: 165-173.
  45. Simoes, R., Castro, J. (2001). Ozone Depolymerization of Polysaccharides in Different Materials. Journal of Pulp and Paper Science, 27 (3): 82-87
  46. Yue, W., Yao, P., Wei, Y., Mo, H. (2008). Synergetic Effect of Ozone and Ultrasonic Radiation on Degradation of Chitosan. Polymer Degradation and Stability, 93: 1814-1821.
  47. Chen, Z., Fang, J., Chihhao, F., Shang, C. (2016). Oxidative Degradation of N-Nitrosopyrrolidine by the Ozone/UV Process: Kinetics and Pathways. Chemosphere, 150: 731-739.
  48. Dai, Q., Chen, L., Chen, W., Chen, J. (2015). Degradation and Kinetics of Phenoxyacetic Acid in Aqueous Solution by Ozonation. Separation and Purification Technology, 142: 287-292.
  49. Agriopoulou, S., Koliadima, A., Karaiskakis, G., Kapolos, J. (2016). Kinetic Study of Aflatoxins Degradation in the Presence of Ozone. Journal Food Control, 61: 221-226.
  50. Mbachu, R.A.D., Manley, J. (1981). Degradation of Lignin by Ozone II Molecular Weights and Molecular Weight Distributions of the Alkali-Soluble Degradation Products. Journal of Polymer Science: Polymer Chemistry Edition, 19: 2065-2078.
  51. Zhang, R., Yuan, D.X., Liu, B.M. (2015). Kinetics and Products of Ozonation of C.I. Reactive Red 195 in a Semi-Batch Reactor. Chinese Chemical Letters, 26: 93-99.
  52. Lucasa, M.S., Peresa, J.A., Lan, B.Y., Puma, G.L. (2009). Ozonation Kinetics of Winery Wastewater in a Pilot-Scale Bubble Column Reactor. Water Research, 43: 1523-1532.
  53. Guo, W.Q., Yin, R.L., Zhou, X.J., Du, S.J., Cao, H.O., Yang, S.S., Ren, N.Q. (2015). Sulfamethoxazole Degradation by Ultrasound/Ozone Oxidation Process in Water: Kinetics, Mechanisms, and Pathways. Ultrasonics Sonochemistry, 22: 182-187.
  54. Vreeman, H.J., Snoeren, T.H.M., Payens, T.A.J. (1980). Physicochemical Investigation of κ-Carrageenan in the Random State. Biopolymers, 19: 1357-1354.
  55. Tanford, C. (1961). Physical Chemistry of Macromolecules. John Wiley & Sons, Inc. New York.
  56. Beltran, F.J. (2005). Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Taylor and Francis e-Library.
  57. Arias, A., Melo, R., Mariani, S., Zaror, C. (1997). Kinetics of Oxidation Reactions Between Ozone, Lignin and Cellulose. Celulosa Y Papel, 12-17.
  58. Abad L.V., Saiki, S., Kudo, H., Muroya, Y., Katsumura, Y., de la Rosa, A.M. (2007). Rate Constants of Reactions of κ-Carrageenan with Hydrated Electron and Hydroxyl Radical. Nuclear Instruments and Methods in Physics Research, 265: 410-413.