The Effect of Mesoporous H-ZSM-5 Crystallinity as a CaO Support on the Transesterification of Used Cooking Oil

Amalia Putri Purnamasari  -  Department of Chemistry, Institut Tekonologi Sepuluh Nopember, Surabaya 60111,, Indonesia
Meyga E. F. Sari  -  Department of Chemistry, Institut Tekonologi Sepuluh Nopember, Surabaya 60111,
Desy T. Kusumaningtyas  -  Department of Chemistry, Institut Tekonologi Sepuluh Nopember, Surabaya 60111,, Indonesia
Suprapto Suprapto  -  Department of Chemistry, Institut Tekonologi Sepuluh Nopember, Surabaya 60111,, Indonesia
Abdul Hamid  -  Department of Chemistry, Institut Tekonologi Sepuluh Nopember, Surabaya 60111,, Indonesia
*Didik Prasetyoko  -  (Scopus ID: 6507890461) Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
Received: 21 Nov 2016; Published: 28 Oct 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: The 2nd International Seminar on Chemistry (ISoC 2016) (Surabaya, 26-27 July 2016)
Language: EN
Full Text:
Statistics: 710 402


Transesterification of used cooking oil was carried out over calcium oxide supported on mesoporous H-ZSM-5 prepared from kaolin as solid base catalysts. Solid basic catalysts investigated in this study were characterized by XRD, FTIR spectroscopy, and N2 adsorption-desorption techniques. The XRD pattern showed peaks corresponding to the CaO and mesoporous ZSM-5 in the sample. The peak intensity of the CaO increased as CaO loading in ZSM-5 was increased. The characterization based on FTIR spectroscopy revealed that CaO/H-ZSM-5 solids have functional groups characteristics of both CaO and mesoporous H-ZSM-5 which appeared in the band at around  550 cm-1 and 480 cm-1. The isotherm of N2 adsorption-desorption of CaO/H-ZSM-5 indicated the type IV isotherm with the presence of hysteresis loop. For the catalytic activity, the biodiesel yield using catalyst of 10 % CaO/HZSM-5 (100 %), 30 % CaO/HZSM-5 (100 %), 50 % CaO/HZSM-5 (100 %) were 24.34, 27.37, and 29.73 %, respectively. It also related with the basic active site, when loading CaO increased, the basic active site also increased. Copyright © 2017 BCREC Group. All rights reserved

Received: 21st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017

How to Cite: Purnamasari, A.P., Sari, M.E.F., Kusumaningtyas, D.T., Suprapto, S., Hamid, A., Prasetyoko, D. (2017). The Effect of Mesoporous H-ZSM-5 Crystallinity as a CaO Support on the Transesterification of Used Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 329-336 (doi:10.9767/bcrec.12.3.802.329-336)


CaO/H-ZSM-5; Zeolite; Mesoporous; Cooking Oil; Transesterification

Article Metrics:

  1. Kansedo, J., Lee, K.T., Bhatia, S. (2009). Cerbera Odollam (Sea Mango) Oil as A Promising Non-Edible Feedstock for Biodiesel Production. Fuel, 88: 1148-1150.
  2. Holilah, Prasetyoko, D., Oetami, T.P., Santosa, E.B., Zein, Y.M., Bahruji, H., Ediati, R.,Fansuri, H., Juwari. (2015). The Potential of Reutealis Trisperma Seed as A New Non-Edible Source for Biodiesel Production. Biomass Conversion and Biorefinery, 5: 347-353.
  3. Wang, Y., Chou, H., Chen, B., Lee, D. (2013). Optimization of Sodium Loading on Zeolite Support for Catalyzed Transesterification of Triolein with Methanol. Bioresource Technology, 145: 1-6.
  4. Yan, S., Lu, H., Liang, B. (2008). Supported CaO Catalysts Used in the Transesterification of Rapeseed Oil for the Purpose of Biodiesel Production. Energy & Fuels, 22: 646-651.
  5. Witoon, T., Bumrungsale, S., Vathavanichkul, P., Palitsakun, S., Saisriyoot, M., Faungnawakij, K. (2014). Biodiesel Production from Transesterification of Palm Oil with Methanol over CaO Supported on Bimodal Meso-Macroporous Silica Catalyst. Bioresource Technology, 156: 329-334.
  6. Samart, C., Chaiyan, C., Reubroycharoen, P. (2010). Biodiesel Production by Methanolysis of Soybean Oil Using Calcium Supported on Mesoporous Silica Catalyst. Energy Conversion and Management, 51: 1428-1431.
  7. Zabeti, M., Daud, W., Aroua, M.K. (2010). Biodiesel Production Using Alumina-Supported Calcium Oxide: An Optimization Study. Fuel Processing Technology, 91: 243-248.
  8. Demirbas, A. (1998). Fuel Properties and Calculation of Higher Heating Values of Vegetable Oils. Fuel, 771: 117-120.
  9. Schuchardt, U., Sercheli, R., Vargas, R.M. (1998). Transesterification of Vegetable Oils: A Review. Brazilian Chemical Society, 9: 199-210.
  10. Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto, Hartati, Purbaningtyas, T.E. (2015). Direct Synthesis of Mesoporous Aluminosilicates from Indonesian Kaolin Clay without Calcinations. Applied Clay Science, 118: 290-294.
  11. Zein, Y.M., Anal, A.K., Prasetyoko, D., Qoniah, I. (2016). Biodiesel Production from Waste Palm Oil Catalyzed by Hierarchical ZSM-5 Supported Calcium Oxide. Indonesian Journal of Chemistry, 16: 98-104.
  12. Gonçalves, M.L., Dimitrov, L.D., Jordão, M.H., Wallau, M., Urquieta-González, E.A. (2008). Synthesis of Mesoporous ZSM-5 by Crystallisation of Aged Gels in the Presence of Cetyltrimethylammonium Cations. Catalysis Today, 133-134: 69-79.
  13. Pasupulety, N., Gunda, K., Liu, Y., Rempel, G.L., Flora, T.T.Ng. (2013). Production of Biodiesel from Soybean Oil on CaO/Al2O3 Solid Base Catalysts. Applied Catalysis A General, 452: 189-202.
  14. Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R. (2007). Biodiesel from Sunflower Oil by Using Activated Calcium Oxide. Applied Catalysis B: Environmental, 73: 317-326.
  15. Albuquerque, M.C.G., Jimenez-Urbistonde, I., Santamarıa-Gonzalez, J., Merida-Robles, J.M., Moreno-Tost, R., Rodrıguez-Castellon, E., Jimenez-Lopez, A., Azevedo, D.C.S., Cavalcante Jr, C.L., Maireles-Torres, P. (2008). CaO Supported on Mesoporous Silicas as Basic Catalysts for Transesterification Reactions. Applied Catalyst A General, 334: 35-43.