Rapid Alcoholysis of Jatropha Curcas Oil for Biodiesel Production Using Ultrasound Irradiation

DOI: https://doi.org/10.9767/bcrec.12.3.801.306-311
Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 21-11-2016
Published: 01-12-2017
Section: The 2nd International Seminar on Chemistry (ISoC 2016) (Surabaya, 26-27 July 2016)
Fulltext PDF Tell your colleagues Email the author

The biodiesel synthesis through alcoholysis process of triglyceride from Jatropha curcas using different type of alcohol, such as: methanol, ethanol, isopropyl alcohol and tert-butanol, was conducted in the presence of potassium hydroxide (KOH) as catalyst under 35 kHz frequency ultrasound irradiation. The optimum conditions, such as: alcohol to jatropha oil molar ratio, concentration of catalyst, reaction temperature, and reaction time, were found  to be 7:1 of alcohol to jatropha oil molar ratio, 0.5 % of KOH, temperature of reaction at 35 0C, within the reaction times of 15 minutes. The results obtained for the different types of alcohol were 62.77 %, 57.93 %, 51.64 %, and 46.77 % for methanol, ethanol, isopropyl alcohol, and tert-butanol, respectively. Copyright © 2017 BCREC Group. All rights reserved

Received: 11st November 2016; Revised: 8th March 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017

How to Cite: Irwan, M., Saidi, H., Rachman, M.A., Ramli, R., Marlinda, M. (2017). Rapid Alcoholysis of Jatropha Curcas Oil for Biodiesel Production Using Ultrasound Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3): 306-311 (doi:10.9767/bcrec.12.3.801.306-311)



Alcoholysis; Jatropha Oil; Biodiesel; Ultrasound

  1. Muh. Irwan 
    Department of Chemical Engineering, Politeknik Negeri Samarinda, Jln. Dr. Ciptomangunkusumo, Kampus Gunung Lipan, Samarinda 75131,, Indonesia
  2. Hamdani Saidi 
    Institute of Hydrogen Economy (IHE), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100,, Malaysia
  3. M. A. Rachman 
    Agency for Assesment and Application of Technology, BPPT, Kawasan Puspiptek Serpong, Tangerang 15314,, Indonesia
  4. Ramli Ramli 
    Department of Chemical Engineering, Politeknik Negeri Samarinda, Jln. Dr. Ciptomangunkusumo, Kampus Gunung Lipan, Samarinda 75131,, Indonesia
  5. Marlinda Marlinda 
    Department of Chemical Engineering, Politeknik Negeri Samarinda, Jln. Dr. Ciptomangunkusumo, Kampus Gunung Lipan, Samarinda 75131,, Indonesia
  1. Verma, P., Singh, V.M. (2014). Assessment of Diesel Engine performance using Cotton Seed Biodiesel. Integrated Research Advances, 1 (1): 1-4.
  2. Istadi, I., Pramudono, B., Suherman, S., Priyanto, S. (2010). Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel. Bulletin of Chemical Reaction Engineering & Catalysis, 5(1): 51-56.
  3. Dorado, M.P., Ballesteros, E., Mittelbach, M., Lopes, F.J. (2004). Kinetic Parameters Affecting the Alkali-Catalyzed Transesterification Process of Used Olive Oil. Energy & Fuels, 18: 1457-1462.
  4. Manh, D.V., Chen, Y.H., Chang, C.C., Chang, M.C., Chang, C.Y. (2011). Biodiesel Production from Tung Oil and Blended Oil via Ultrasonic Transesterification Process. Journal of the Taiwan Institute of Chemical Engineers, 42: 640-644.
  5. Pathak, V., Paul, A. (2013). Experimental Investigation of Performance & Emission Characteristics of Diesel Engine Working on Diesel and NOME with Ethanol and Triacetin Blends. International Journal on Modern Engineering Research, (IJMER), 3(5): 2792–2796.
  6. Ayuk, A.A., Umunakwe, E.C., Ejele, A.E. (2011). Optimum Requirements for the Synthesis of Biodiesel using Fatty Acid Distillates. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 2(6): 897–900.
  7. Rodrigues, S., Mazzone, L.C.A., Santos, F.F.P., Cruz, M.G.A., Fernandes, F.A.N. (2009). Optimization of the Production of Ethyl Esters by Ultrasound Assisted Reaction of Soybean Oil Ethanol. Brazilian Journal of Chemical Engineering, 26(2): 361–366.
  8. Supranto, S. (2013). Palm Oil Transesterification Processing to Biodiesel using a Combine of ultrasonic and Chemical Catalyst. Pertanika Journal of Science & Technology, 21(2): 567–580.
  9. Ginting, M.S.A., Azizan, M.T., Yusup, S. (2012). Alkaline In Situ Ethanolysis of Jatropha Curcas. Fuel, 93: 82–85.
  10. Murugesan, A., Umarani, C., Chinnusamy, T.R., Khrisnan, M., Subramanian, R., Neduzchezhain (2009). Production and Analysis of Bio-diesel from Non-Edible Oils – A Review. Renewable & Sustainable Energy Reviews, 13: 825-834.
  11. Stavarache, C., Vinatoru, M., Nishimura, R., Maeda, Y. (2005). Fatty Acids Methyl Esters from Vegetable Oil by Means of Ultrasonic Energy. Ultrasonic Sonochemistry, 12: 367-372.
  12. Hanh, H.D., Dong, N.T., Okitsu, K., Nishimura, R., Maeda, Y. (2009). Biodiesel Production through Transesterification of Triolein with Various Alcohols in an Ultrasonic Field. Renewable Energy, 34: 766-768.
  13. Yin, X., Ma, H., You, Q., Wang, Z., Chang, J. (2012). Comparison of Four Different Enhancing Methods for Preparing Biodiesel through Transesterification of Sunflower Oil. Applied Energy, 91: 320-325.
  14. Azcan, N., Danisman, A. (2007). Alkali Catalyzed Transesterification Oils by Microwave Irradiation. Fuel, 86: 2639-2644.
  15. Syam, A.M., Maulinda, L., Ibrahim, I., Muhammad, S. (2013). Waste Frying Oils-Based Biodiesel: Process and Fuel Properties. Smart Grid and Renewable Energy, 4: 281-286.
  16. Keera, S.T., El Sabagh, S.M., Taman, A.R. (2011). Transesterification of Vegetable Oil to Biodiesel Fuel Using Alkaline Catalyst. Fuel, 90: 42-47.
  17. Effects of Molar Ratio, Alkali Catalyst Concentration and Temperature on Transesterification of Jatropha Oil with Methanol under Ultrasonic Irradiation. Advanced in Chemical Engineering and Science, 1: 45-50.
  18. Baroi, C., Yanful, E.K., Bergougou, M.A. (2009). Biodiesel Production from Jatropha curcas Oil using Potassium Carbonate as an Unsupported Catalyst. International Journal of Chemical Reactor Engineering, 7: 1-18.
  19. Prabaningrum, N., Ismail, L.B., Subbarao, D. (2014). In-Situ Methanolysis of Jatropha curcas seeds in Soxhlet Extractor, Advanced Materials Research, 917: 72-79.
  20. Leung, D.Y.C., Guo, Y. (2006). Transesterification of Neat and Used Frying Oil : Optimization for Biodiesel Production, Fuel Process Technology, 87(10): 883-890.
  21. Jitputti. J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat. K., Attanatho, L., Jenvanitpanjakul, P. (2006). Transesterification of Crude Palm Kernel Oil and Crude Coconut Oil by Different Solid Catalyst. Chemical Engineering Journal, 116(1): 61-66.
  22. Hoque. M.E., Singh, A., Chuan, Y.L. (2011). Biodiesel from Low Cost Feedstocks : The Effects of Process Parameters on the Biodiesel Yield. Biomass and Bioenergy, 35(4): 1582-1587.
  23. Demirbas, A. (2002). Biodiesel from vegetable oils via Transesterification in Supercritical Methanol. Energy Conversion and Management, 43(17): 2349-2356.
  24. Rustamaji, H., Budiman, A., Sulistyo, H. (2010). Alkoholisis Minyak jarak Pagar Dengan Katalisator Asam Padat. Seminar Rekayasa Kimia dan Proses, 4-5 Agustus, 2010.