Self-Cleaning Limestone Paint Modified by Nanoparticles TiO2 Synthesized from TiCl3 as Precursors and PEG6000 as Dispersant

DOI: https://doi.org/10.9767/bcrec.12.3.800.351-356
Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 21-11-2016
Published: 28-10-2017
Section: The 2nd International Seminar on Chemistry (ISoC 2016) (Surabaya, 26-27 July 2016)
Fulltext PDF Tell your colleagues Email the author

Limestone is commonly used for wall painting, but it is easy to be dirty. In this study, a self-cleaning limestone paint was synthesized by modifying dispersant and TiO2 nanoparticles. The TiO2 that prepared by TiCl3 were functionalized with PEG6000 as a surface activating agent. The paint achieved highest impurity degradation of 83.11 % for the mass ratio of TiO2 and PEG6000 (MRTP) of 1: 6, in which TiO2 average size distribution was 75.81 µm2, the particle surface area of TiO2 was 2,544 µm2, and the smallest contact angle was 7°. It was found that the dispersant (PEG6000) significantly improved the self-cleaning ability of limestone paint. The surface tension reduction from PEG6000-modified prevented the agglomeration process of TiO2 and suggests that the limestone paint a good self-cleaning coating for wall painting. Copyright © 2017 BCREC Group. All rights reserved

Received: 21st November 2016; Revised: 10th September 2017; Accepted: 11st September 2017; Available online: 27th October 2017; Published regularly: December 2017

How to Cite: Fadhilah, N., Etruly, N., Muharja, M., Sawitri, D. (2017). Self-Cleaning Limestone Paint Modified by Nanoparticles TiO2 Synthesized from TiCl3 as Precursors and PEG6000 as Dispersant. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 351-356 (doi:10.9767/bcrec.12.3.800.351-356)

 

Keywords

TiO2 photocatalyst; PEG6000 dispersant; limestone; self cleaning

  1. Nur Fadhilah 
    Engineering Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya,, Indonesia
  2. Niki Etruly 
    Engineering Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya,, Indonesia
  3. Maktum Muharja 
    Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya,, Indonesia
  4. Dyah Sawitri 
    Engineering Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya,, Indonesia
  1. Quagliarini, E., Bondioli, F., Battista, G., Cordoni, C. (2012). Self-Cleaning And De-Polluting Stone Surfaces : TiO2 Nanoparticles for Limestone. Construction & Building Material, 37: 51-57.
  2. Badan Penelitian dan Pengembangan Pemerintah Provinsi Sumatera Utara. (2011). Studi Pemanfaatan Batu Gamping di Kabupaten Tapanuli Selatan. Medan
  3. Fujishima, A., Zhang, X., Tryk, D.A. (2008). TiO2 Photocatalysis and Related Surface Phenomena. Surface Science Report, 63: 515-582.
  4. Licciulli, D.A., Lisi. D. (2002). Self - Cleaning Glass. Scienza E Tecnologia Dei Materiali Ceramici, 1-29
  5. Nakata, K., Fujishima, A. (2012).TiO2 photocatalysis : Design and applications. Journal of Photochemistry and Photobiology C : Photochemistry Reviews, 13: 169-189.
  6. Fujishima, A., Rao, T.N., Tryk, D.A. (2000). Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology, 1: 1-21.
  7. Molea, A., Popescu, V. (2011). The Obtaining of Titanium Dioxide Nanocrystalline Powders. Optoelectronics and Advanced Materials, 5: 242-246.
  8. Bing, P., Yi, H, Li-yuan, C., Guo-liang, L., Ming-ming, C., Xiao-fei, Z. (2007). Influence of Polymer Dispersants on Dispersion Stability of Nano-TiO2 Aqueous Suspension and Its Application in Inner Wall Latex Paint. Hunan Industrial Key Project of Science Technology, 4: 490-495.
  9. Tristantini, D., Mustikasari, R. (2011). Modification of TiO2 Nanoparticle with PEG Application Modification of TiO2 Nanoparticle with PEG and SiO2 for Anti-fogging and Self-cleaning Application. International Journal Engineering Technology, 11: 73-78.
  10. Kusmahetiningsih, N., Sawitri, D. (2012). Application of TiO2 for Self Cleaning in Water Based Paint with Polyethylene Glycol ( PEG ) as Dispersant. Proceeding International Conferenceon Chemical and Material Engineering, p MSD.07. 1-6
  11. Sulasmono, B. (2012). Studi Komparasi Pengaruh Variasi Dispersant terhadap Stabilitas Suspensi dan Sifat Hidrofilik Nanopartikel TiO2 Berbasis Air. Universitas Indonesia.
  12. Castro, A.L., Nunes, M.R., Carvalho, A.P., Costa, F.M., Florencio, M.H. (2008). Synthesis of Anatase TiO2 Nanoparticles with High Temperature Stability and Photocatalytic Activity. Solid State Sciences, 10: 602-606.
  13. Wu, H.B., Lou, X.W., Hng, H.H. (2012). Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries. Chemistry - A European Journal, 18: 2094-2099.
  14. Jesus, M.A.M.L., Neto, J.T.S., Timo, G., Paiva, P.R.P., Dantas, M.S.S., Ferreira, A.M. (2015). Superhydrophilic Self-Cleaning Surfaces Based on TiO2 and TiO2 / SiO2 Composite Films For Photovoltaic Module Cover Glass. Applied Adhesion Science, 3: 1-9.
  15. Aprilita, N.H., Kartini, I., Ratnaningtyas, S.H. (2008). Self-Cleaning Glass Based on Acid-Treated TiO2 Films with Palmitic Acid. Indonesia Journal Chemistry, 8: 200-206.
  16. Hasan, M.M., Haseeb, A.S.M.A, Saidur, R., Masjuki, H.H. (2008). Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films. International Journal of Mechanical Aerospace Industrial Mechatronic and Manufacturing Engineering, 2: 410-414.