Investigation on the Removal of Carbon Dioxide Exhausted from Industrial Units in a Lab-Scale Fluidized Bed Reactor

Puriya Mohamad Gholy Nejad  -  Chemical Engineering Department, Faculty of Engineering, University of Isfahan, Iran, Islamic Republic of
*Mohammad Sadegh Hatamipour orcid scopus  -  Chemical Engineering Department, Faculty of Engineering, University of Isfahan, Iran, Islamic Republic of
Received: 5 Jun 2020; Revised: 9 Jul 2020; Accepted: 9 Jul 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

In this study, CO2 removal efficiency from flue gas was investigated in a fluidized bed reactor under semi-dry conditions. A lab-scale fluidized bed reactor, filled with inert glass beads, was used to investigate the effect of operating parameters on the CO2 removal efficiency using calcium hydroxide slurry as the absorbent. The Taguchi design method was used to design the experiments. The maximum inlet concentration of CO2 was 3 vol%. The most important factors were the reaction surface area, inlet gas velocity, inlet CO2 concentration, absorbent solution flow rate, inlet gas temperature and calcium hydroxide slurry concentration. The experimental results indicated that the CO2 removal efficiency increased when increasing the effective surface area of the reaction. Moreover, the removal efficiency increased by decreasing the input gas flow rate and inlet CO2 concentration. By performing experiments under optimum conditions, the maximum obtained CO2 removal efficiency was 79%. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Absorption; Carbon capture; Ca(OH)2; Fluidized bed; Taguchi design; CO2 removal

Article Metrics:

  1. Gupta, H., Fan, L.S. (2002). Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 41, 4035–4042. DOI: 10.1021/ie010867l
  2. Al-Marzouqi, M.H., El-Naas, M.H., Marzouk, S.A.M., Al-Zarooni, M.A., Abdullatif, N., Faiz, R. (2008). Modeling of CO2 absorption in membrane contactors. Separation Purification Technology, 59, 286–293. DOI: 10.1016/j.seppur.2007.06.020
  3. Global E.V. (2017). outlook 2017, Int. Energy Agency. 1–71. https://www.cleanenergy-ministerial.org/sites/default/files/2018-07/GlobalEVOutlook2017.pdf
  4. I.E.A. (International E. Agency), (2008). World energy outlook,. https://www.iea.org/ reports/world-energy-outlook-2008
  5. Beisheim, T., Zieba, M., Scheffknecht, G. (2013). Experimental investigations on deposit formation by recarbonation on external heat exchanger surfaces in oxyfuel CFB boilers, in: Energy Procedia,: pp. 1283–1290. DOI: 10.1016/j.egypro.2013.06.003
  6. Van der Hoeven, M. (2012). CO2 Emissions from Fuel Combustion: Highlights, Int. Energy Agency, Fr..
  7. Haghnegahdar, M.R., Hatamipour, M.S., Rahimi, A. (2010). Removal of carbon dioxide in an experimental powder-particle spouted bed reactor. Separation Purification Technology, 72, 288–293. DOI: 10.1016/j.seppur.2010.02.019
  8. Dieter, H., Hawthorne, C., Zieba, M., Scheffknecht, G. (2013). Progress in calcium looping post combustion CO2 capture: successful pilot scale demonstration. Energy Procedia. 37, 48–56.
  9. Charitos, A., Hawthorne, C., Bidwe, A.R., Sivalingam, S., Schuster, A., Spliethoff, H., Scheffknecht, G. (2010). Parametric investigation of the calcium looping process for CO2 capture in a 10 kWth dual fluidized bed. Int. J. Greenh. Gas Control., 4, 776–784.
  10. Dieter, H., Bidwe, A.R., Varela-Duelli, G., Charitos, A., Hawthorne, C., Scheffknecht, G. (2014). Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart. Fuel, 127, 23–37.
  11. Kremer, J., Galloy, A., Stroehle, J., Epple, B. (2013). Continuous CO2 capture in a 1‐MWh carbonate looping pilot plant. Chemical Engineering Technology, 36, 1518–1524.
  12. Ströhle, J., Junk, M., Kremer, J., Galloy, A., Epple, B. (2014). Carbonate looping experiments in a 1 MWth pilot plant and model validation. Fuel, 127, 13–22.
  13. Varel, G.D., Bernard, L., Bidwe, A.R., Stack-Lara, V., Hawthorne, C., Zieba, M., Scheffknecht, G. (2013). Calcium looping process: experimental investigation of limestone performance regenerated under high CO2 partial pressure and validation of a carbonator model. Energy Procedia, 37, 190–198.
  14. Sánchez-Biezma, A., Paniagua, J., Diaz, L., Lorenzo, M., Alvarez, J., Martínez, D., Arias, B., Diego, M.E., Abanades, J.C. (2013). Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility. Energy Procedia, 37, 1–8.
  15. Symonds, R.T., Champagne, S., Ridha, F.N., Lu, D.Y. (2016). CO2 capture performance of CaO–based pellets in a 0.1 MWh pilot-scale calcium looping system. Powder Technology, 290, 124–131.
  16. Charitos, A., Rodríguez, N., Hawthorne, C., Alonso, M., Zieba, M., Arias, B., Kopanakis, G., Scheffknecht, G., Abanades, J.C. (2011). Experimental validation of the calcium looping CO2 capture process with two circulating fluidized bed carbonator reactors. Industrial Engineering Chemistry Research, 50, 9685–9695.
  17. Symonds, R.T., Lu, D.Y., Manovic, V., Anthony, E.J. (2012). Pilot-scale study of CO2 capture by CaO-based sorbents in the presence of steam and SO2. Industrial Engineering Chemistry Research, 51, 7177–7184.
  18. Kavoshi, L., Hatamipour, M.S., Rahimi, A. (2013). Kinetic modeling of reactive absorption of carbon dioxide in a spray dryer. Chemical Engineering Technology, 36, 500–506. DOI: 10.1002/ceat.201200304
  19. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chemical Engineering Research & Design, 77, 62–68. DOI: 10.1205/026387699525882
  20. Abanades, J.C., Anthony, E.J., Lu, D.Y., Salvador, C., Alvarez, D. (2004). Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J., 50, 1614–1622. DOI: 10.1002/aic.10132
  21. Hanak, D.P., Anthony, E.J., Manovic, V. (2015). A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems. Energy Environ. Sci., 8, 2199–2249. DOI: 10.1039/c5ee01228g
  22. Han, S.J., Yoo, M., Kim, D.W., Wee, J.H. (2011). Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy and Fuels, 25, 3825–3834. DOI: 10.1021/ef200415p
  23. Chen, B., Laucks, M.L., Davis, E.J. (2004). Carbon dioxide uptake by hydrated lime aerosol particles. Aerosol Science Technology, 38, 588–597.
  24. Lin, C.C., Chen, B.C., Chen, Y.S., Hsu, S.K. (2008). Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Sepparation Purification Technology, 62, 507–512. DOI: 10.1016/j.seppur.2008.02.019
  25. Beruto, D.T., Botter, R. (2000). Liquid-like H2O adsorption layers to catalyze the Ca(OH) 2 /CO2 solid–gas reaction and to form a non-protective solid product layer at 20° C. J. Eur. Ceram. Soc., 20, 497–503.
  26. Roy, R. (2001). Design of Experiment Using The Taguchi Approach: 16 step to product and process improvement. Technometrics, 44, 289–289. DOI: 10.1198/004017002320256440
  27. Istadi, I., Suherman, S., Buchori, L. (2010). Optimization of reactor temperature and catalyst weight for plastic cracking to fuels using response surface methodology. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (2), 103-111. DOI: 10.9767/bcrec.5.2.797.103-111
  28. Cook, P.J. (2006). Carbon dioxide capture and geological storage: Research, development and application in Australia. Int. J. Environ. Stud., 63, 731–749. DOI: 10.1080/00207230601047073
  29. Shih, S.M., Ho, C.S., Song, Y.S., Lin, J.-P. (2002). Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature. Industrial Engineering Chemistry Research, 38, 1316–1322. DOI: 10.1021/ie980508z

No citation recorded.