CuAl LDH/Rice Husk Biochar Composite for Enhanced Adsorptive Removal of Cationic Dye from Aqueous Solution

Neza Rahayu Palapa orcid scopus  -  Graduate School of Mathematics and Natural Science Graduate School, Universitas Sriwijaya, Indonesia
Tarmizi Taher  -  Institute of Regional Innovation, Hirosaki University, Japan
Bakri Rio Rahayu  -  Graduate School of Mathematics and Natural Science Graduate School, Universitas Sriwijaya, Indonesia
Risfidian Mohadi  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Addy Rachmat  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
*Aldes Lesbani  -  Graduate School of Mathematics and Natural Science Graduate School, Universitas Sriwijaya, Indonesia
Received: 17 May 2020; Revised: 14 Jun 2020; Accepted: 14 Jun 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The preparation of CuAl LDH and biochar (BC) composite derived from rice husk and its application as a low-cost adsorbent for enhanced adsorptive removal of malachite green has been studied. The composite was prepared by a one-step coprecipitation method and characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Brunauer-Emmett-Teller (BET), and Scanning Electron Microscopy - Energy Dispersive X-ray (SEM−EDX). The result indicated that CuAl LDH was successfully incorporated with the biochar that evidenced by the broadening of XRD peak at 2θ = 24° and the appearance of a new peak at 1095 cm1 on the FTIR spectra. The BET surface area analysis revealed that CuAl/BC composite exhibited a larger surface area (200.9 m2/g) that the original CuAl LDH (46.2 m2/g). Surface morphological changes also confirmed by SEM image, which showed more aggregated particles. The result of the adsorption study indicated the composite material was efficient in removing malachite green with Langmuir maximum adsorption capacity of CuAl/BC reaching 470.96 mg/g, which is higher than the original CuAl LDH 59.523 mg/g. The thermodynamic analysis suggested that the adsorption of malachite green occurs spontaneously (ΔG < 0 at all tested temperature) and endothermic nature. Moreover, the CuAl/BC composite showed strong potential as a low-cost adsorbent for cationic dye removal since it showed not only a high adsorption capacity but also good reusability. Copyright © 2020 BCREC Group. All rights reserved

Keywords: Adsorption; Biochar; Composite Material; Layered Double Hydroxide; Malachite Green

Article Metrics:

  1. Bukhtiyarova, M.V. (2019). A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry, 269, 494–506. DOI: 10.1016/j.jssc.2018.10.018
  2. Wang, Q., Hare, D.O. (2012). Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews, 112, 7, 4124–4155. DOI: 10.1021/cr200434v
  3. Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci., 153, 172-186. DOI: 10.1016/j.clay.2017.12.021
  4. Antonyraj, C.A., Koilraj, P., Kannan, S. (2010). Synthesis of delaminated LDH: A facile two step approach. Chemical Communications, 46, 1902. DOI: 10.1039/b922122k
  5. Sepehr, M.N., Al-Musawi, T.J., Ghahramani, E., Kazemian, H., Zarrabi, M. (2017). Adsorption Performance of Magnesium/Aluminum Layered Double Hydroxide Nanoparticles for Metronidazole From Aqueous Solution. Arabian Journal of Chemistry, 10, 611–23. DOI: 10.1016/j.arabjc.2016.07.003
  6. Kameda, T., Takeuchi, H., Yoshioka, T. (2011). NiAl layered double hydroxides modified with citrate, malate, and tartrate: Preparation by coprecipitation and uptake of Cu 2 from aqueous solution. Journal of Physics and Chemistry of Solids, 72, 846–51. DOI: 10.1016/j.jpcs.2011.03.003
  7. Lesbani, A., Maretha, D.R., Taher, T., Miksusanti Mohadi, R., Andreas, R. (2018). Layered double hydroxides Mg/Fe intercalated H3[α-PW12O40]· n H2O as adsorbent of cadmium(II). AIP Conference Proceedings, 2049, 020013. DOI: 10.1063/1.5082418
  8. Sun, X., Dong, J., Li, Z., Liu, H., Jing, X., Chi, Y., Hu, C. (2019). Mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides for the catalytic decontamination of sulfur mustard simulant. Dalton Transactions, 48, 5285–5291. DOI: 10.1039/c9dt00395a
  9. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011
  10. Oktriyanti, M., Palapa, N.R., Mohadi, R., Lesbani, A. (2019). Modification Of Zn-Cr Layered Double Hydroxide With Keggin Ion. Indonesian Journal of Environmental Management and Sustainability, 3, 93–99.
  11. Zhu, J., He, J., Du, X., Lu, R., Huang, L., Ge, X. (2011). A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host-guest inclusion studies. Applied Surface Science, 257, 9056–9062. DOI: 10.1016/j.apsusc.2011.05.099
  12. Qu, J., Sha, L., Wu, C., Zhang, Q. (2019). Applications of mechanochemically prepared layered double hydroxides as adsorbents and catalysts: A mini-review. Nanomaterials, 9, 1–15. DOI: 10.3390/nano9010080
  13. Zoromba, M.S., Nour, M.A., Eltamimy, H.E., Abd El-Maksoud, S.A. (2018). Effect of modified layered double hydroxide on the flammability and mechanical properties of polypropylene. Science and Engineering of Composite Materials, 25, 101–108. DOI: 10.1515/secm-2016-0050
  14. Ruan, X., Chen, Y., Chen, H., Qian, G., Frost, R.L. (2016). Sorption behavior of methyl orange from aqueous solution on organic matter and reduced graphene oxides modified Ni-Cr layered double hydroxides. Chemical Engineering Journal, 297, 295-303. DOI: 10.1016/j.cej.2016.01.041
  15. Leng, L., Yuan, X., Zeng, G., Shao, J., Chen, X., Wu, Z., Wang, H., Peng, X. (2015). Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel, 155, 77–85. DOI: 10.1016/j.fuel.2015.04.019
  16. Huang, D., Liu, C., Zhang, C., Deng, R., Wang, R., Xue, W., Luo, H., Zeng, G., Zhang, Q., Guo, X. (2019). Cr(VI) removal from aqueous solution using biochar modified with Mg/Al-layered double hydroxide intercalated with ethylenediaminetetraacetic acid. Bioresource Technology, 276, 127–132. DOI: 10.1016/j.biortech.2018.12.114
  17. Xu, X., Cao, X., Zhao, L. (2013). Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92, 955–961. DOI: 10.1016/j.chemosphere.2013.03.009
  18. Tareq, R., Akter, N., Azam, M.S. (2019). Biochars and Biochar Composites [Internet]. Biochar from Biomass Waste. Elsevier Inc. DOI: 10.1016/b978-0-12-811729-3.00010-8
  19. Meili, L., Lins, P.V., Zanta, C.L.P.S., Soletti, J.I., Ribeiro, L.M.O., Dornelas, C.B., Silva, T.L., Vieira, M.G.A. (2019). MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 168, 11–20. DOI: 10.1016/j.clay.2018.10.012
  20. Wan, S., Wang, S., Li, Y., Gao, B. (2017). Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. Journal of Industrial and Engineering Chemistry, 47, 246–253. DOI: 10.1016/j.jiec.2016.11.039
  21. Wang, S., Gao, B., Li, Y., Zimmerman, A.R., Cao, X. (2016). Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. RSC Advances, 6, 17792–17799. DOI: 10.1039/c5ra17490b
  22. Li, H., Wen, J., Yu, R., Meng, J., Wang, C., Wang, C., Sun, S. (2015). Facile synthesis of a nanocomposite based on graphene and ZnAl layered double hydroxides as a portable shelf of a luminescent sensor for DNA. RSC Advances, 5, 9341–9247. DOI: 10.1039/C4RA15395B
  23. Palapa, N.R., Mohadi, R., Rachmat, A., Lesbani, A. (2020). Adsorption Study of Malachite Green Removal from Aqueous Solution Using Cu/M3+(M3+=Al,Cr ) Layered Double Hydroxide. Mediterranean Journal of Chemistry, 10, 33–45.
  24. Zubair, M., Jarrah, N., Khalid, A., Saood, M. (2018). Starch-NiFe-layered double hydroxide composites : Efficient removal of methyl orange from aqueous phase. Journal of Molecular Liquids, 249, 254–264. DOI: 10.1016/j.molliq.2017.11.022
  25. Szabados, M., Kónya, Z., Kukovecz, Á., Sipos, P., Pálinkó, I. (2019). Structural reconstruction of mechanochemically disordered CaFe-layered double hydroxide. Applied Clay Science, 174, 138–145. DOI: 10.1016/j.clay.2019.03.033
  26. Benito, P., Herrero, M., Labajos, F.M., Rives, V. (2010). Effect of post-synthesis microwave – hydrothermal treatment on the properties of layered double hydroxides and related materials. Applied Clay Science, 48, 218–227. DOI: 10.1016/j.clay.2009.11.051
  27. Wang, N., Sun, J., Fan, H., Ai, S. (2016). Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions. Talanta, 148, 301–307. DOI: 10.1016/j.talanta.2015.11.007
  28. Sun, X., Neuperger, E., Dey, S.K. (2015). Insights into the synthesis of layered double hydroxide (LDH) nanoparticles: Part 1. Optimization and controlled synthesis of chloride-intercalated LDH. Journal of Colloid and Interface Science, 459, 264–272. DOI: 10.1016/j.jcis.2015.07.073
  29. Gunawan, P., Xu, R. (2009). Direct assembly of anisotropic layered double hydroxide (LDH) nanocrystals on spherical template for fabrication of drug-LDH hollow nanospheres. Chemistry of Materials, 21(5), 781-783.
  30. Pang, X., Chen, L., Liu, Y., Chi, M., Li, Z., Plank, J. (2017). Growth behavior of water dispersed MgAl layered double hydroxide nanosheets. RSC Advances, 7, 14989–97. DOI: 10.1039/C7RA00833C
  31. Zhang, Q., Jiao, Q., Leroux, F., Tang, P., Li, D., Feng, Y. (2017). Antioxidant intercalated hydrocalumite as multifunction nanofiller for Poly(propylene): Synthesis, thermal stability, light stability, and anti-migration property. Polymer Degradation and Stability, 140, 9-16. DOI: 10.1016/j.polymdegradstab.2017.04.012
  32. Parida, K.M., Mohapatra, L. (2012). Carbonate intercalated Zn/Fe layered double hydroxide: A novel photocatalyst for the enhanced photo degradation of azo dyes. Chemical Engineering Journal, 179, 131–139. DOI: 10.1016/j.cej.2011.10.070
  33. Zhao, S., Xu, J., Wei, M., Song, Y.F. (2011). Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: Oximation of aromatic aldehydes with large enhancement of selectivity. Green Chemistry, 13, 384–389. DOI: 10.1039/c0gc00664e
  34. Darmograi, G., Prelot, B., Geneste, A., Martin-Gassin, A., Salles, F., Zajac, J. (2016). How does competition between anionic pollutants affect adsorption onto Mg-Al layered double hydroxide? Three competition schemes. Journal of Physical Chemistry C, 120, 10410–10418. DOI: 10.1021/acs.jpcc.6b01888
  35. Daud, M., Hai, A., Banat, F., Wazir, M.B., Habib, M., Bharath, G., Al-Harthi, M.A. (2019). A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)– Containing hybrids as promising adsorbents for dyes removal. Journal of Molecular Liquids, 288, 110989. DOI: 10.1016/j.molliq.2019.110989
  36. George, G., Saravanakumar, M.P. (2018). Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn-Al LDH: application on crystal violet and malachite green dye adsorption-isotherm, kinetics and Box-Behnken design. Environmental Science and Pollution Research International, 25, 30236–30254. DOI: 10.1007/s11356-018-3001-3
  37. Islam, M.A., Ali, I., Karim, S.M.A., Hossain Firoz, M.S., Chowdhury, A.N., Morton, D.W., Angove, M.J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 32, 100911. DOI: 10.1016/j.jwpe.2019.100911
  38. Yu, S., Wang, X., Chen, Z., Wang, J., Wang, S., Hayat, T., Wang, X. (2017). Layered double hydroxide intercalated with aromatic acid anions for the efficient capture of aniline from aqueous solution. Journal of Hazardous Materials, 321, 111–120. DOI: 10.1016/j.jhazmat.2016.09.009
  39. Lu, Y., Jiang, B., Fang, L., Ling, F., Gao, J., Wu, F., Zhang, X. (2016). High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption. Chemosphere, 152, 415–422. DOI: 10.1016/j.chemosphere.2016.03.015
  40. Nishimura, S., Takagaki, A., Ebitani, K. (2010). Monodisperse iron oxide nanoparticles embedded in Mg-Al hydrotalcite as a highly active, magnetically separable, and recyclable solid base catalyst. Bulletin of the Chemical Society of Japan, 83, 846–851. DOI: 10.1246/bcsj.20100059
  41. Lesbani, A., Tarmizi, R. D., Taher, T., Palapa, N. R., Mohadi, R. (2019). Preparation of Ni-Al LDH: Influence of intercalated polyoxometalate anion (α-SiW12O40) 4-on the interlayer gallery distance. AIP Conference Proceedings, 2194 (1), 020054. AIP Publishing
  42. Vyavahare, G.D., Gurav, R.G., Jadhav, P.P., Patil, R.R., Aware, C.B., Jadhav, J.P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306–315. DOI: 10.1016/j.chemosphere.2017.11.180
  43. Saha, P., Chowdhury, S., Gupta, S., Kumar, I. (2010). Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chemical Engineering Journal, 165, 874–882. DOI: 10.1016/j.cej.2010.10.048
  44. Ahmad, M.A., Afandi, N.S., Bello, O.S. (2017). Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon. Applied Water Science, 7, 717–727. DOI: 10.1007/s13201-015-0284-0
  45. Beakou, B.H., El Hassani, K., Houssaini, M.A., Belbahloul, M., Oukani, E., Anouar, A. (2017). A novel biochar from Manihot esculenta Crantz waste: Application for the removal of Malachite Green from wastewater and optimization of the adsorption process. Water Science and Technology, 76, 1447–56. DOI: 10.2166/wst.2017.332
  46. Zhang, J., Liu, M., Yang, T., Yang, K., Wang, H. (2016). A novel magnetic biochar from sewage sludge: Synthesis and its application for the removal of malachite green from wastewater. Water Science and Technology, 74, 1971–1979. DOI: 10.2166/wst.2016.386
  47. Kulaksiz, E., Gözmen, B., Kayan, B., Kalderis, D. (2017). Adsorption of Malachite Green on Fe-modified biochar: Influencing factors and process optimization. Desalination and Water Treatment, 74, 383–394. DOI: 10.5004/dwt.2017.20601
  48. Das, S., Dash, S.K., Parida, K.M. (2018). Kinetics, Isotherm, and Thermodynamic Study for Ultrafast Adsorption of Azo Dye by an Efficient Sorbent: Ternary Mg/(Al+Fe) Layered Double Hydroxides. ACS Omega, 3, 2532–2545. DOI: 10.1021/acsomega.7b01807

No citation recorded.