Experimental and Theoretical Studies of Eosin Y Dye as Corrosion Inhibitors for Carbon Steel in Perchloric Acid Solution

*Tarik Attar orcid scopus  -  Laboratory of Toxicomed, University Abou Beker Belkaid Tlemcen, Algeria
Abbes Benchadli  -  Laboratory of Toxicomed, University Abou Beker Belkaid Tlemcen, Algeria
Boulanouar Messaoudi  -  Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, University of Abou Bekr Belkaïd Tlemcen, Algeria
Naceur Benhadria  -  Laboratory of Inorganic Materials Chemistry and Application, Department of Materials Engineering, University of Science and Technology of Oran (USTO M. B), Algeria
Esma Choukchou-Braham  -  Laboratory of Toxicomed, University Abou Beker Belkaid Tlemcen, Algeria
Received: 9 May 2020; Revised: 23 May 2020; Accepted: 25 May 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

The adsorption behavior and the inhibition performance of Eosin Y Dye for carbon steel corrosion in 1 M perchloric acid solution have been carried using weight loss and scanning electron micrograph (SEM) techniques as well theoretical calculations based on density functional theory (DFT). The studied inhibitor concentrations were between 5´10-5 M and 5´10-3 M. Results obtained revealed that Eosin Y is an effective inhibitor and its inhibition efficiency increases with increasing concentration to attain 96.91% at 5´10-3 M at 30 °C. Thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy were obtained from experimental data of the temperature studies of the inhibition process at five temperatures ranging from 20 to 60 °C. It was found that the adsorption of Eosin Y could prevent steel from weight loss and the adsorption accorded with the Langmuir adsorption isotherm. The free energy of adsorption showed that the corrosion inhibition takes place by spontaneous physicochemical adsorption of inhibitor molecules on the carbon steel surface. SEM and DFT studies confirm the adsorption of Eosin Y on carbon steel surface. Copyright © 2020 BCREC Group. All rights reserved


Keywords: Carbon steel; Eosin Y; Weight loss; DFT; Corrosion Inhibitor; perchloric solution

Article Metrics:

  1. Uranga, P., Shang, C., Senuma, T., Yang, J-R., Guo, A-M., Moharbacher, H. (2014). Molybdenum alloying in high-performance flat-rolled steel grades. Adv. Manuf., 8, 15–34. DOI: 10.1007/s40436-019-00285-y
  2. David, W.H., Carlos, A.A. (2012). Exfoliation Corrosion and Pitting Corrosion and Their Role in Fatigue Predictive Modeling: State-of-the-Art Review. Int. J. Aerospace. Eng., 2012, 1-29. DOI: 10.1155/2012/191879
  3. Rahal, H.T., Abdel-Gaber, A.M., Younes, G.O. (2016). Inhibition of steel corrosion in nitric acid by sulfur containing compounds. Chem. Eng. Commun., 203, 435-445. DOI: 10.1080/00986445.2015.1017636
  4. Mohammadinejad, F., Ali Hosseini, S.M., Zandi, M.S., Bahrami, M.J., Golshani, Z. (2020). Metoprolol: New and Efficient Corrosion Inhibitor for Mild Steel in Hydrochloric and Sulfuric Acid Solutions. Acta Chim. Slov., 67, 2020, 1-10. DOI: 10.17344/acsi.2019.5301
  5. Attar, T., Larabi, L., Harek, Y. (2014). The Inhibition effect of potassium iodide on the corrosion of pure iron in sulfuric acid. Adv. Chem., 2014, 1-5. DOI: 10.1155/2014/827514
  6. Attar, T., Benchadli, A., Choukchou-Braham, E. (2019). Corrosion inhibition of carbon steel in perchloric acid by potassium iodide. Inter. J. Adv. Chem., 7, 35-41. DOI: 10.14419/ijac.v7i1.19651
  7. Xhanari, K., Finšgar, M., Hrnčič, M.K, Maver, U., Knez, ž., Seitib, B. (2017). Green corrosion inhibitors for aluminium and its alloys: a review. RSC Advances., 7, 27299–27330. DOI: 10.1039/C7RA03944A
  8. Ko, X., Sharma, S. (2017). Adsorption and self-assembly of surfactants on metal-water interfaces. J. Phys. Chem. B. 121, 10364–10370. DOI: 10.1021/acs.jpcb.7b09297
  9. Al-Moghrabi, R.S., Abdel-Gaber, A.M., Rahal, H.T. (2019). Corrosion Inhibition of Mild Steel in Hydrochloric and Nitric Acid Solutions Using Willow Leaf Extract. Prot. Met. Phys. Chem. Surf., 55, 603-607. DOI: 10.1134/S2070205119030031
  10. Benhachem, F.-Z., Attar, T., Bouabdallah, F. (2019). Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon from starch. Chem. Rev. Lett., 2, 33-39. DOI: 10.22034/CRL.2019.87964
  11. Benhachem, F.-Z., Attar, T. (2019). Comparison studies for the removal of a basic dye from aqueous solution using coffee residues and waste tea. Inter. J. Adv. Chem., 7, 97-103. DOI: 10.14419/ijac.v7i1.29596
  12. Shukla, S.K., Singh, A.K., Murulana, L.C., Kabanda, M.M., Ebenso, E.E. (2012). Inhibitive Effect of Azorubine Dye on the Corrosion of Mild Steel in Hydrochloric Acid Medium and Synergistic Iodide Additive. Int. J. Electrochem. Sci. 7, 5057-5068.
  13. Peme, T., Olasunkanmi, L.O., Bahadur, I., Adekunle, A.S., Kabanda, M.M., Ebenso, E.E. (2015). Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions. Molecules., 20, 16004-16029. DOI: 10.3390/molecules200916004
  14. Abdeli, M., Ahmadi, N.P., Khosroshahi, R.A. (2010). Nile Blue and Indigo Carmine organic dyes as corrosion inhibitor of mild steel in hydrochloric acid. J. Solid. State. Electrochem., 14, 1317–1324. DOI: 10.1007/s10008-009-0925-z
  15. Al-Moubaraki, A.H. (2015). Corrosion Protection of Mild Steel in Acid Solutions Using Red Cabbage Dye. Chem. Eng. Commun., 202, 1069-1080. DOI: 10.1080/00986445.2014.907565
  16. El Boraei, N., Halim, S., Ibrahim, M. (2018). Effective corrosion inhibition of mild steel in acidic medium using inexpensive kermes natural dye: experimental and quantum chemical study. Anti-Corros. Method. M., 65, 626-636. DOI: 10.1108/ACMM-04-2018-1927
  17. El Sayed, M.Y., Abdel-Gaber, A.M., Rahal, H.T. (2019). Safranin-A Potential Corrosion Inhibitor for Mild Steel in Acidic Media: A Combined Experimental and Theoretical Approach. J. Fail. Anal. Prev., 19, 1174-1180. DOI: 10.1007/s11668-019-00719-6
  18. Oguzie, E.E., Onuoha, G.N., Onuchukwu, A.I. (2005). The inhibition of aluminium corrosion in potassium hydroxide by “Congo Red” dye, and synergistic action with halide ionsnull. Anti-Corros. Meth. Mater., 52, 293-298. DOI: 10.1108/00035590510615794
  19. Oguzie, E.E., Okolue, B.N., Ogukwe, C.E., Unaegbu, C. (2006). Corrosion inhibition and adsorption behaviour of bismark brown dye on aluminium in sodium hydroxide solution. Mater. Lett., 60, 3376-3378. DOI: 10.1016/j.matlet.2006.03.018
  20. Oguzie, E.E., Akalezi, C.O., Enenebeaku, C.K., Aneke, J.N. (2010). Corrosion inhibition and adsorption behavior of malachite green dye on aluminum corrosion, Chem. Eng. Commun., 198, 46-60. DOI: 10.1080/00986445.2010.493
  21. Eduok, U., Inam, E., Umoren, S.A., Akpan, I.A. (2013). Chemical and spectrophotometric studies of naphthol dye as an inhibitor for aluminium alloy corrosion in binary alkaline medium. Geosystem. Engineering., 16, 146-155. DOI: 10.1080/12269328.2013.803708
  22. Li, X., Deng, S., Fu, H., Zhao, N., Li, Y., Mu, G. (2009). Corrosion inhibition of cresol red for cold rolled steel in phosphoric acid solution. Corros. Sci. Prot. Technol., 21, 354–357. DOI: 10.3969/j.issn.1002-6495.2009.04.002
  23. Li, X., Deng, S., Fu, H. (2010). Inhibition effect of methyl violet on the corrosion of cold rolled steel in 1.0 M HCl solution. Corros. Sci., 52, 3413–3420. DOI: 10.1016/j.corsci.2010.06.013
  24. Deng, S., Li, X., Fu, H. (2011). Alizarin violet 3B as a novel corrosion inhibitor for steel in HCl, H2SO4 solutions. Corros. Sci., 53, 3596–3602. DOI: 10.1016/j.corsci.2011.07.003
  25. Zaferani, S.H., Shishesaz, M.R. (2014). Corrosion Inhibition of Carbon Steel in Acidic Solution by Alizarin Yellow GG (AYGG). J. Pet. Environ. Biotechnol., 5, 1-5. DOI: 10.4172/2157-7463.1000188
  26. Ebenso, E.E., Alemu, H., Umoren, S.A., Obot, I.B. (2008.) Inhibition of Carbon steel Corrosion in Sulphuric Acid Using Alizarin Yellow GG Dye and Synergistic Iodide Additive. Int J Electrochem Sci., 3, 1325-1339.
  27. Onen, A.I., Maitera, O.N., Joseph, J., Ebenso, E.E. (2011). Corrosion inhibition potential and adsorption behaviour of bromophenol blue and thymol blue dyes on mild steel in acidic medium. Int. J. Electrochem Sc., 6, 2884–2897.
  28. El-Haddad, M.N., Fouda, A.S., Mostafa, H.A. (2013). Corrosion Inhibition of Carbon Steel by New Thiophene Azo Dye Derivatives in Acidic Solution. J. Materi. Eng. Perform., 22, 2277–2287. DOI: 10.1007/s11665-013-0508-0
  29. Valle-Quitana, J.C., Dominguez-Patiño, G.F., Gonzalez-Rodriguez, J.G. (2014). Corrosion Inhibition of Carbon Steel in 0.5 M H2SO4 by Phtalocyanine Blue. ISRN Corrosion., 2014, 1-8. DOI: 10.1155/2014/945645
  30. Abd El-raoufa, M., El-Azabawy, O.E., El-Azabawy, R.E. (2015). Investigation of adsorption and inhibitive effect of acid red GRE (183) dye on the corrosion of carbon steel in hydrochloric acid media. Egypt. J. Pet., 24, 233-239. DOI: 10.1016/j.ejpe.2015.07.006
  31. Attar, T., Larabi, L., Harek, Y. (2014). Inhibition effect of potassium iodide on the corrosion of carbon steel (XC 38) in acidic medium. Inter. J. Adv. Chem., 2, 139-142. DOI: 10.14419/ijac.v2i2.3272
  32. Pearson, R. (1988). Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem., 27, 734-740. DOI: 10.1021/ic00277a030
  33. Yuan, S., Liang, B., Zhao, Y., Pehkonen, S. (2013). Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria. Corros. Sci., 74, 353-366. DOI: 10.1016/j.corsci.2013.04.058
  34. Chygyrynets, E., Vorobyova, V. (2014). A Study of Rape-Cake Extract as Eco-Friendly Vapor Phase Corrosion Inhibitor. Chem. Chem. Technol., 8, 235-242. DOI: 10.23939/chcht08.02.235
  35. Eddy, N.O., Ita, B.I. (2011). QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl. J. Mol. Model., 17, 359–376. DOI: 10.1007/s00894-010-0731-7
  36. Samsonowicz, M., Regulska, E., Świsłocka, R., Butarewicz, A. (2018). Molecular structure and microbiological activity of alkali metal 3,4-dihydroxyphenylacetates. J. Saudi Chem. Soc., 22, 896-907. DOI: 10.1016/j.jscs.2018.01.0097
  37. Attar, T., Messaoudi, B., Benhadria, N. (2020). DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol., 14, 20-25. DOI: 10.23939/chcht14.01.020
  38. Hassan, R.M., Zaafarany, I.A. (2013). Kinetics of corrosion inhibition of aluminium in acidic media by water-soluble natural polymeric pectates as anionic polyelectrolyte inhibitors. Materials., 6, 2436–2451. DOI: 10.3390/ma6062436
  39. Anyiam, C.K., Ogbobe, O., Oguzie, E.E. (2020). Corrosion inhibition of galvanized steel in hydrochloric acid medium by a physically modified starch. Sn. Appl. Sci., 2, 520-527. DOI: 10.1007/s42452-020-2322-2
  40. Shahidi, Z.M., Golestani, G., Gholamhosseinzadeh, M. (2017). Mentha spicata L. Extract as a Green Corrosion Inhibitor for Carbon Steel in HCl Solution. Phys. Chem. Res., 5, 293-307. DOI: 10.22036/pcr.2017.41160
  41. Benchadli, A., Attar, T., Choukchou-Braham E. (2019). Inhibition of Carbon Steel Corrosion in Perchloric Acid Solution by Povidone Iodine. Phys. Chem. Res., 7, 837-848. DOI: 10.22036/pcr.2019.198787.1665
  42. Doner, A., Solmaz, R., Ozcan, M., Kardas, G. (2011). Experimental and Theoretical Studies of Thiazoles as Corrosion Inhibitors for Mild Steel in Sulphuric Acid Solution. Corros. Sci., 53, 2902–2913. DOI: 10.1016/j.corsci.2011.05.027
  43. Chakravarthy, M.P., Mohana, K.N., Pradeep Kumar, C.B. (2014). Corrosion inhibition effect and adsorption behaviour of nicotinamide derivatives on mild steel in hydrochloric acid solution. Int. J. Ind. Chem., 5, 1-21. DOI: 10.1007/s40090-014-0019-3
  44. Mobin, M., Zehra, S., Aslam, R. (2016). L-Phenylalanine methyl ester hydrochloride as a green corrosion inhibitor for mild steel in hydrochloric acid solution and the effect of surfactant additive. RSV. Adv., 6, 5890-5902. DOI: 10.1039/c5ra24630j
  45. Khouri, S..J. (2015). Titrimetric study of the solubility and dissociation of benzoic acid in water: effect of ionic strength and temperature. Am. J. Analyt. Chem., 6, 429-436. DOI: 10.4236/ajac.2015.65042
  46. Al-Moghrabi, R.S., Abdel-Gaber, A.M., Rahal, H.T. (2018). A comparative study on the inhibitive effect of Crataegusoxyacantha and Prunusavium plant leaf extracts on the corrosion of mild steel in hydrochloric acid solution. Int. J. Ind. Chem., 9, 255-263. DOI: 10.1007/s40090-018-0154-3
  47. Abdel-Gaber, A.M., Rahal, H.T., Beqai, F.T. (2020). Eucalyptus leaf extract as a eco-friendly corrosion inhibitor for mild steel in sulfuric and phosphoric acid solutions. Int. J. Ind. Chem., 11, 1-10. DOI: 10.1007/s40090-020-00207-z
  48. Lukovits, I., Kalman, E., Zucchi, F. (2001). Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency. Corrosion., 57, 3–9. DOI: 10.5006/1.3290328
  49. Murulana, L.C., Singh, A.K., Shukla, S.K., Kabanda, M.M., Ebenso, E.E. (2012). Experimental and quantum chemical studies of some bis (trifluoromethyl-sulfonyl) imide imidazolium-based ionic liquids as corrosion inhibitors for mild steel in hydrochloric acid solution. Ind. Eng. Chem. Res., 51, 13282–13299. DOI: 10.1021/ie300977d
  50. Kaya, S., Tüzün, B., Kaya, C., Obot, I.B. (2016). Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study. J. Taiwan. Inst. Chem. E., 58, 528-535. DOI: 10.1016/j.jtice.2015.06.009
  51. Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry., 101, 14–21. DOI: 10.1016/j.bioelechem.2014.06.010

No citation recorded.