Selective Reduction of Southeast Sulawesi Nickel Laterite using Palm Kernel Shell Charcoal: Kinetic Studies with Addition of Na2SO4 and NaCl as Additives

Achmad Shofi  -  Public Works and Spatial Planning, Indonesia
*Yayat Iman Supriyatna orcid scopus  -  Research Unit for Mineral Technology, Indonesian Institute of Sciences, Indonesia
Agus Budi Prasetyo  -  Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Indonesia
Received: 5 May 2020; Revised: 6 Jun 2020; Accepted: 12 Jun 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The aim of the reduction process is to concentrate nickel at high temperatures with a certain carbonaceous material as a reducing agent. The use of chemicals like Na2SO4 and NaCl in the reduction process can increase the content and recovery of nickel in ferronickel concentrates. A selective reduction of laterite nickel was carried out in a non-isothermal and an isothermal using palm kernel shell charcoal as a reductant and with Na2SO4 and NaCl as additives. Firstly, the raw material is made into a pellet and dried in an oven at 100 °C for two hours. The pellets are weighed before and after the reduction process. The non-isothermal reduction process used the Thermal Gravimetric Analysis (TGA) method from a temperature of 100 to 1300 °C, with a heat rate of 10 °C per minute. The isothermal reduction at temperatures 500, 600, 700, 950, 1050, and 1150 °C occurred with a reduction time of 30, 60, and 90 minutes. The analysis is Inductively Coupled Plasma (ICP) to determine the content of nickel and iron from the reduction process, X-ray Diffraction (XRD) to see changes in the phases formed after the selective reduction process, and Scanning Electron Microscopy (SEM-EDX) for viewing the microstructure of the phase. The Differential Thermal Analyzer-Temperature Gravimetric Analysis (DTA-TGA) results show the endothermic at 256 °C, and the exothermic peak at 935 °C with a total mass loss of 42.15% at 1238 °C. The shrinking core model was used for the kinetic studies of the reduction process. The closest kinetic model to the experimental results is the Ginstling-Brounshtein model, with an activation energy value of 8.73 kcal/mol. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: additives; characterization; kinetic; nickel laterite; reductor; selective reduction

Article Metrics:

  1. Barkas, J. (2010). Drivers and Risks for Nickel Demand 7th China Nickel Conference. Shanghai.
  2. Li, Y., Sun, Y., Han, Y., Gao, P. (2013). Coal-based reduction mechanism of low-grade laterite ore. Transactions of Nonferrous Metals Society of China, 23(11), 3428–3433. DOI: 10.1016/S1003-6326(13)62884-8
  3. Mudd, G.M. (2010). Global trends and environmental issues in nickel mining : Sulfides versus laterites. Ore Geology Reviews, 38(1–2), 9–26. DOI: 10.1016/j.oregeorev.2010.05.003
  4. Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S., Fujita, T. (2010). Calcination of low-grade laterite for concentration of Ni by magnetic separation. Minerals Engineering, 23(4), 282–288. DOI: 10.1016/j.mineng.2010.01.005
  5. Supriyatna, Y.I., Sihotang, I.H., Sudibyo, S. (2019). Preliminary Study of Smelting of Indonesian Nickel Laterite Ore using an Electric Arc Furnace. Materials Today: Proceedings, 13, 127–131. DOI: 10.1016/j.matpr.2019.03.201
  6. Agatzini-Leonardou, S., Tsakiridis, P.E., Oustadakis, P., Karidakis, T., Katsiapi, A. (2009). Hydrometallurgical process for the separation and recovery of nickel from sulphate heap leach liquor of nickeliferrous laterite ores. Minerals Engineering, 22(14), 1181–1192. DOI: 10.1016/j.mineng.2009.06.006
  7. Pickles, C.A. (2004). Microwave heating behaviour of nickeliferous limonitic laterite ores. Mineral Engineering, 17, 775–784. DOI: 10.1016/j.mineng.2004.01.007
  8. Kyle, J. (2010). Nickel laterite processing technologies – where to next. ALTA 2010 Nickel/Cobalt/Copper Conference, 1–33. Perth, Western Australia: Murdoch Research Repository.
  9. Norgate, T., Jahanshahi, S. (2011). Assessing the energy and greenhouse gas footprints of nickel laterite processing. Minerals Engineering, 24(7), 698–707. DOI: 10.1016/j.mineng.2010.10.002
  10. Li, B., Ding, Z., Wei, Y., Wang, H., Yang, Y., Barati, M. (2018). Kinetics of Reduction of Low-Grade Nickel Laterite Ore Using Carbon Monoxide. Metallurgical and Materials Transactions B, 49(6), 3067–3073. DOI: 10.1007/s11663-018-1367-8
  11. Song, C., Shu-qiang, G., Yu-ling, X., Lan, J., Wei-zhong, D. (2014). Research on Selective Reduction of Laterite Nickel Ore by CO2/H2 Mixed Gas. Advanced Materials Research, 1025–1026, 814–819. DOI: 10.4028/www.scientific.net/AMR.1025-1026.814
  12. Sihotang, I.H., Supriyatna, Y.I., Ismail, I., Sulistijono, S. (2018). The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace. AIP Conference Proceedings, 1945(1), 020023. DOI: 10.1063/1.5030245
  13. Supriyatna, Y.I., Zulhan, Z., Triapriani, Y. (2018). The ferromanganese production using Indonesian low-grade manganese ore using charcoal and palm kernel shell as reductant in mini electric arc furnace. IOP Conference Series: Materials Science and Engineering, 285, 012022, DOI: 10.1088/1757-899X/285/1/012022
  14. Luo, S., Yi, C., Zhou, Y. (2011). Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas. Renewable Energy, 36(12), 3332–3336. DOI: 10.1016/j.renene.2011.05.006
  15. Zuo, H., Hu, Z., Zhang, J., Li, J., Liu, Z. (2013). Direct reduction of iron ore by biomass char. International Journal of Minerals, Metallurgy and Materials, 20(6), 514–521. DOI: 10.1007/s12613-013-0759-7
  16. Chen, G., Hwang, W., Liu, S., Shiau, J., Chen, I. (2014). Effect of Reduction Temperature On The Carbothermic Reduction Process Of Laterite Ores Mixing With Bio-Coal. Metal, 56 (4), 550-555. DOI: 10.2320/matertrans.M2014315
  17. Forster, J., Pickles, C.A., Elliott, R. (2015). Microwave carbothermic reduction roasting of a low grade nickeliferous silicate laterite ore. Mineral Engineering, 88, 18-27, DOI: 10.1016/j.mineng.2015.09.005
  18. Chen, J., Hayes, P.C. (2019). Mechanisms and Kinetics of Reduction of Solid NiO in CO/CO2 and CO/Ar Gas Mixtures. Metallurgical and Materials Transactions B, 50(6), 2623–2635. DOI: 10.1007/s11663-019-01662-5
  19. Manukyan, K.V., Avetisyan, A.G., Shuck, C.E., Chatilyan, H.A., Rouvimov, S., Kharatyan, S.L., Mukasyan, A.S. (2015). Nickel Oxide Reduction by Hydrogen: Kinetics and Structural Transformations. Journal of Physical Chemistry C, 119(28), 16131–16138. DOI: 10.1021/acs.jpcc.5b04313
  20. Qu, G., Zhou, S., Wang, H., Li, B., Wei, Y. (2019). Production of Ferronickel Concentrate from Low-Grade Nickel Laterite Ore by Non-Melting Reduction Magnetic Separation Process. Metals, 9(1340), 1–11. DOI: 10.3390/met9121340
  21. Rodrigues, F., Pickles, C. A., Peacey, J., Elliott, R., Forster, J. (2017). Factors Affecting the Upgrading of a Nickeliferous Thermal Growth and Magnetic Separation. Minerals, 7(176), 1–21. DOI: 10.3390/min7090176
  22. Dong, J., Wei, Y., Zhou, S., Li, B., Yang, Y., Mclean, A. (2018). The Effect of Additives on Extraction of Ni, Fe and Co from Nickel Laterite Ores. Journal of The Minerals, Metals & Society, 70(10), 2365–2377. DOI: 10.1007/s11837-018-3032-8
  23. Jiang, M., Sun, T., Liu, Z., Kou, J., Liu, N., Zhang, S. (2013). Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. International Journal of Mineral Processing, 123, 32–38. DOI: 10.1016/j.minpro.2013.04.005
  24. Rao, M., Li, G., Zhang, X., Luo, J., Peng, Z., Jiang, T. (2016). Reductive Roasting of Nickel Laterite Ore with Sodium Sulfate for Fe-Ni Production. Part I: Reduction/Sulfidation Characteristics. Separation Science and Technology, 51 (8), 1408-1420. DOI: 10.1080/01496395.2016.1162173
  25. Yang, S., Du, W., Shi, P., Shangguan, J., Liu, S., Zhou, C., Chen, P., Fan, H. (2016). Mechanistic and Kinetic Analysis of Na2SO4 - Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry. PLOS ONE, 11(6), 1–21. DOI: 10.1371/journal.pone.0157369
  26. Zhou, S., Wei, Y., Li, B., Wang, H., Ma, B., Wang, C. (2016). Mechanism of Sodium Chloride in Promoting Reduction of High-Magnesium Low-Nickel Oxide Ore. Scientific Reports, 6, 1–12. DOI: 10.1038/srep29061
  27. Zevgolis, E., Zografidis, C., Halikia, I. (2010). The reducibility of the Greek nickeliferous laterites : a review. Mineral Processing and Extractive Metallurgy, 119(1), 9–18. DOI: 10.1179/174328509X431472
  28. Levenspiel, O. (1999). Chemical Reaction Engineering. In Chemical Reaction Engineering Third Edition (pp. 566–586).
  29. Connor, F.O., Cheung, W.H., Valix, M. (2006). Reduction roasting of limonite ores : effect of dehydroxylation. International Journal of Mineral Processing, 80, 88–99. DOI: 10.1016/j.minpro.2004.05.003
  30. Elliott, R., Rodrigues, F., Pickles, C.A., Peacey, J., De, L. (2015). A two-stage thermal upgrading process for nickeliferous limonitic laterite ores. Canadian Metallurgical Quarterly, 54 (4), 395–405. DOI: 10.1179/1879139515Y.0000000009
  31. Elliott, R., Pickles, C.A., Forster, J. (2016). Thermodynamics of the Reduction Roasting of Nickeliferous Laterite Ores. Journal of Minerals and Materials Characterization and Engineering, 4, 320–346. DOI: 10.4236/jmmce.2016.46028
  32. Donghua, H., Jianliang, Z., Rui, M.A.O., Mingming, C.A.O. (2011). Thermal behaviors and growth of reduced ferronickel particles in carbon-laterite composites. Rare Metals, 30(6), 681–687. DOI: 10.1007/s12598-011-0449-4
  33. Li, B., Wang, H., Wei, Y. (2011). The reduction of nickel from low-grade nickel laterite ore using a solid-state deoxidisation method. Mineral Engineering, 24, 1556–1562. DOI: 10.1016/j.mineng.2011.08.006
  34. Habashi, F. (1997). Handbook of Extractive Metallurgy Volume II : Primary Metals, Secondary Metals, Light Metals. New York: WILEY-VCH.

No citation recorded.