Synthesis of SnO2 Nanoparticles by High Potential Electrolysis

*Fredy Kurniawan  -  Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Arief Rahman Hakim, Surabaya 60111,, Indonesia
Rahmi Rahmi  -  Chemistry Department, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Arief Rahman Hakim, Surabaya 60111,, Indonesia
Received: 15 Nov 2016; Published: 1 Aug 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: The 2nd International Seminar on Chemistry (ISoC 2016) (Surabaya, 26-27 July 2016)
Language: EN
Full Text:
Statistics: 892 579


SnO2 nanoparticles have been synthesized by high voltage electrolysis. Tin bare was used for anode and cathode. The effect of potentials and electrolyte were studied. The particles obtained after electrolysis was characterized using X-ray Diffraction (XRD). The diffractogram is in agreement with the standard diffraction pattern of SnO2 which is identified as tetragonal structure. The Fourier Transform Infrared (FTIR) spectrum indicates that there is a vibration of Sn–O asymmetric at 580 cm-1. The optimum potential for SnO2 nanoparticles synthesis is 60 V at 0.06 M HCl which shows the highest UV-Vis spectrum. The absorption peak of SnO2 nanoparticles by UV-Vis spectrophotometer appears at about 207 nm. The particle size analysis shows that the SnO2 nanoparticles obtained have the size distribution in a range of 25-150 nm with the highest volume at 83.11 nm. Copyright © 2017 BCREC Group. All rights reserved

Received: 15th November 2016; Revised: 26th February 2017; Accepted: 27th February 2017

How to Cite: Rahmi, R., Kurniawan, F. (2017). Synthesis of SnO2 Nanoparticles by High Potential Electrolysis. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 281-286 (doi:10.9767/bcrec.12.2.773.281-286)



SnO2 nanoparticles; electrochemical; hydrochloric acid; high potential

Article Metrics:

  1. Gondal, M.A., Drmosh, Q.A., Saleh, T.A. (2010). Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Applied Surface Science, 256(23): 7067-7070. doi:10.1016/j.apsusc.2010.05.027
  2. Bhattacharjee, A., Ahmaruzzaman, M., Sinha, T. (2015). A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 751-760. doi:10.1016/j.saa.2014.09.092
  3. Mondal, B., Basumatari, B., Das, J., Roychaudhury, C., Saha, H., Mukherjee, N. (2014). ZnO-SnO2 based composite type gas sensor for selective hydrogen sensing. Sensors and Actuators B: Chemical, 194: 389-396. doi:10.1016/j.snb.2013.12.093
  4. Wei, W., Song, L.-X., Guo, L. (2015). SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries. Chinese Chemical Letters, 26(1):124-128. doi:10.1016/j.cclet. 2014.09.023
  5. Vidhu, V.K., Philip, D. (2015). Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134: 372-379. doi:10.1016/j.saa.2014.06.131
  6. Masuda, Y., Kato, K. (2009). Aqueous synthesis of nanosheet assembled tin oxide particles and their N2 adsorption characteristics. Journal of Crystal Growth, 311(3): 593-596. doi:10.1016/j.jcrysgro.2008.09.066
  7. Supothina, S., Rattanakam, R., Vichaphund, S., Thavorniti, P. (2011). Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters. Journal of the European Ceramic Society, 31(14): 2453-2458.
  8. doi:10.1016/ j.jeurceramsoc.2011.02.018
  9. Zhou, X., Fu, W., Yang, H., Mu, Y., Ma, J., Tian, L., Li, M. (2013). Facile fabrication of transparent SnO2 nanorod array and their photoelectrochemical properties. Materials Letters, 93: 95-98. doi:10.1016/j.matlet.2012. 11.050
  10. Wen, Z., Zheng, F., Yu, H., Jiang, Z., Liu, K. (2013). Hydrothermal synthesis of flowerlike SnO2 nanorod bundles and their application for lithium ion battery. Materials Characterization, 76: 1-5. doi:10.1016/j.matchar.2012. 11.011
  11. Liu, H., Gong, S., Hu, Y., Zhao, J., Liu, J., Zheng, Z., Zhou, D. (2009). Tin oxide nanoparticles synthesized by gel combustion and their potential for gas detection. Ceramics International, 35(3): 961-966. doi:10.1016/ j.ceramint. 2008.04.010
  12. Talebian, N., Jafarinezhad, F. (2013). Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceramics International, 39(7): 8311-8317. doi:10.1016/ j.ceramint.2013.03.101
  13. Lou, Z., Wang, L., Wang, R., Fei, T., Zhang, T. (2012). Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid-State Electronics, 76: 91-94. doi:10.1016/j.sse.2012.05.062
  14. Aziz, M., Saber Abbas, S., Wan Baharom, W. R. (2013). Size-controlled synthesis of SnO2 nanoparticles by sol-gel method. Materials Letters, 91: 31-34. doi:10.1016/j.matlet. 2012.09.079
  15. Vijayarangamuthu, K., Rath, S. (2014). Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. Journal of Alloys and Compounds, 610: 706-712. doi:10.1016/ j.jallcom.2014.04.187
  16. Zhang, J., Gao, L. (2004). Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. Journal of Solid State Chemistry, 177(4-5): 1425-1430. doi:10.1016/ j.jssc.2003.11.024
  17. Zamand, N., Nakhaei Pour, A., Housaindokht, M.R., Izadyar, M. (2014). Size-controlled synthesis of SnO2 nanoparticles using reverse microemulsion method. Solid State Sciences, 33: 6-11. doi:10.1016/ j.solidstatesciences.2014.04.005
  18. Rajendran, V., Anandan, K. (2012). Size, morphology and optical properties of SnO2 nanoparticles synthesized by facile surfactant-assisted solvothermal processing. Materials Science in Semiconductor Processing, 15(4): 393-400. doi:10.1016/j.mssp. 2012.01.002
  19. Davar, F., Salavati-Niasari, M., Fereshteh, Z. (2010). Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. Journal of Alloys and Compounds, 496(1-2): 638-643. doi:10.1016/j.jallcom.2010.02.152
  20. Yu, Z., Zhu, S., Li, Y., Liu, Q., Feng, C., Zhang, D. (2011). Synthesis of SnO2 nanoparticles inside mesoporous carbon via a sonochemical method for highly reversible lithium batteries. Materials Letters, 65(19-20): 3072-3075. doi:10.1016/j.matlet.2011.06.053
  21. Gaber, A., Abdel-Latief, A.Y., Abdel-Rahim, M.A., Abdel-Salam, M.N. (2013). Thermally induced structural changes and optical properties of tin dioxide nanoparticles synthesized by a conventional precipitation method. Materials Science in Semiconductor Processing, 16(6): 1784-1790. doi:10.1016/j.mssp. 2013.06.026
  22. Ibarguen, C.A., Mosquera, A., Parra, R., Castro, M.S., Rodríguez-Páez, J.E. (2007). Synthesis of SnO2 nanoparticles through the controlled precipitation route. Materials Chemistry and Physics, 101(2-3): 433-440.
  23. doi:10.1016/j.matchemphys.2006.08.003
  24. Zhang, J., Wang, S., Wang, Y., Xu, M., Xia, H., Zhang, S., Wu, S. (2009). Facile synthesis of highly ethanol-sensitive SnO2 nanoparticles. Sensors and Actuators B: Chemical, 139: 369-374. doi:10.1016/j.snb.2009.03.024
  25. Anandgaonker, P., Kulkarni, G., Gaikwad, S., Rajbhoj, A. (2015). Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application. Arabian Journal of Chemistry. doi:10.1016/j.arabjc. 2014.12.015
  26. Budipramana, Y., Suprapto, Ersam, T., Kurniawan, F. (2016). Influence of CTAB and Sonication on Nickel Hydroxide Nanoparticles Synthesis by Electrolysis at High Voltage. In F. Pasila, Y. Tanoto, R. Lim, M. Santoso, N. D. Pah (Eds.), Proceedings of Second International Conference on Electrical Systems, Technology and Information 2015 (ICESTI 2015) (pp. 345-351). Springer Singapore. doi:10.1007/978-981-287-988-2_37
  27. Budipramana, Y., Suprapto, Ersam, T., Kurniawan, F. (2014). Synthesis nickel hidroxide by electrolysis at high voltage. Research Gate, 9(11): 2074-2077
  28. Zulkarnain, Z., Kurniawan, F., Ersam, T., Suprapto, S. (2016). Influence of Ni(OH)2 nanoparticles on insulin sensor sensitivity. ARPN Journal of Engineering and Applied Sciences, 11(11): 6721-6725.
  29. Zulkarnain, Z., Suprapto, S., Ersam, T., Kurniawan, F. (2016). A Novel Selective and Sensitive Electrochemical Sensor for Insulin Detection. Indonesian Journal of Electrical Engineering and Computer Science, 3(3): 496-502. doi:10.11591/ijeecs.v3.i3.pp496-502
  30. Wang, J. (2006). Analytical Electrochemistry (Third Edition.) Publication, New York: A John Wiley & Sons, Inc.
  31. Koryta, J., Dvorak, J., Kavan, L. (1993). Principles of Electrochemistry (Second Edition.). Publication, New York: A John Wiley & Sons, Inc.