skip to main content

Silica Gels from Coal Fly Ash as Methylene Blue Adsorbent: Isotherm and Kinetic Studies

1Department of Chemistry, Facullty of Mathematics and Natural Sciences, Universitas Jember, Indonesia

2Department of Chemistry, Facullty of Mathematics and Natural Sciences, Universitas Jember, India

Received: 13 Nov 2016; Revised: 18 Feb 2017; Accepted: 19 Feb 2017; Available online: 8 May 2017; Published: 1 Aug 2017.
Editor(s): Istadi Istadi, Yuly Kusumawati
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

A lot of dye pollutants were released in the aquatic environment as waste from industrial coloring process. This research aimed to study silica gels (SG) as a potential adsorbent to remove the dyes. The SG can be synthesized from coal fly ash (FA), which is industrial solid waste rarely utilized, using the sol-gel method. Its properties were then characterized by FTIR, XRD, SEM, and isothermal ads-des N2. As a result, FTIR spectra and XRD diffractogram exhibited the successfully SG synthesized from FA with the amorphous structure. The image analysis using SEM demonstrated that SG particles are spherical. The isotherm type, based on isotherm ads-des N2, is type II without hysteresis loop which represents the nonporous material SG with the surface area and pore diameter of 25.977 m2/g and 1.52 nm, respectively. The adsorption capacity performance of SG to remove methylene blue (MB) as a basic dye is 62.70 % which is higher than FA, following Langmuir isotherm adsorption model. The kinetics of adsorption rate of SG are based on the pseudo second order models accelerated by 3.37 times faster than FA. 

Fulltext View|Download
Keywords: Fly Ash; Silica Gel; Adsorption; Isothermals; Kinetics

Article Metrics:

  1. Adam, F., Nelson, J., Khanam, Z., Thankappan, R., Asri, M., Nawi, M. (2013). Applied Surface Science Utilization of Tin and Titanium Incorporated Rice Husk Silica Nanocomposite as Photocatalyst and Adsorbent for The Removal of Methylene Blue in Aqueous Medium. Applied Surface Science, 264: 718-726
  2. Amran, M., Salleh, M., Khalid, D., Azlina, W., Abdul, W., Idris, A. (2011). Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination, 280(1-3): 1-13
  3. Ma, G., Zhu, Y., Zhang, Z., Li, L. (2014). Preparation and Characterization of Multi-Walled Carbon Nanotube/TiO2 Composites: Decontamination Organic Pollutant in Water. Applied Surface Science, 313: 817-822
  4. Chen, Q., He, Q., Lv, M., Xu, Y., Yang, H., Liu, X., Wei, F. (2015). Applied Surface Science Selective Adsorption of Cationic Dyes by UiO-66-NH2. Applied Surface Science, 327: 77-85
  5. Kim, H., Kang, S., Park, S., Seok, H. (2015). Chemistry Adsorption Isotherms and Kinetics of Cationic and Anionic Dyes on Three-Dimensional Reduced Graphene Oxide Macrostructure. Journal of Industrial and Engineering Chemistry, 21: 1191-1196
  6. Solmaz, K.S.A., Birgul, A., Ustun, G.E., Yonar, T. (2006). Colour and COD Removal From Textile Effluent by Coagulation and Advanced Oxidation Processes. Coloration Technology, 122: 102-109
  7. Barka, N., Assabbane, A., Nounah, A., Ichou, A,Y. (2008). Photocatalytic Degradation of Indigo Carmine in Aqueous Solution by TiO2-Coated Non-Woven Fibres. Journal of Hazardous Materials, 152: 1054-1059
  8. Wangpradit, R., Chitprasert, P. (2014). Chitosan-Coated Lentinus Polychrous Lev.: Integrated Biosorption and Biodegradation Systems for Decolorization of Anionic Reactive Dyes. International Biodeterioration & Biodegradation, 93: 168-176
  9. Chen, X., Zhao, Y., Moutinho, J., Shao, J., Zydney, A.L., He, Y. (2015). Recovery of Small dye Molecules From Aqueous Solutions Using Charged Ultrafiltration Membranes. Journal of Hazardous Materials, 284: 58-64
  10. Wang, T., Kailasam, K., Xiao, P., Chen, G., Chen, L., Wang, L., Li, J., Zhu, J. (2014). Adsorption Removal of organic Dyes on Covalent Triazine Framework (CTF). Microporous and Mesoporous Materials, 187: 63-70
  11. Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A. (2010). Adsorption of Methylene Blue on Low-Cost Adsorbents: A review. Journal of Hazardous Materials, 177(1-3): 70-80
  12. Adak, D., Sarkar, M., Mandal, S. (2014). Effect of Nano-Silica on Strength and Durability of Fly Ash Based Geopolymer Mortar. Construction and Building Materials, 70: 453-459
  13. Wang, S., Ma, Q., Zhu, Z.H. (2008). Characteristics of Coal Fly Ash and Adsorption Application. Fuel, 87: 3469-3473
  14. Janos, P., Buchtova, H., Milena, R. (2003). Sorption of Dyes from Aqueous Solutions onto Fly Ash. Water Research, 37: 4938-4944
  15. Woolard, C.D., Strong, J., Erasmus, C.R. (2002). Evaluation of the Use of Modified Coal Ash as a Potential Sorbent for Organic Waste Streams. Applied Geochemistry, 17: 1159-1164
  16. Kalapathy, U., Proctor, A., Shultz, J. (2000). A Simple Method For Production Of Pure Silica From Rice Hull Ash. Bioresource Technology, 73: 257-262
  17. Affandi, S., Setyawan, H., Winardi, S., Purwanto, A., Balgis, R. (2009). A Facile Method for Production of High-Purity Silica Xerogels from Bagasse Ash. Advanced Powder Technology, 20(5): 468-472
  18. Selvaggi, R., Tarpani, L., Santuari, A., Giovagnoli, S., Latterini, L. (2015). Silica Nanoparticles Assisted Photodegradation of Acridine Orange in Aqueous Suspensions. Applied Catalysis B, Environmental, 168-169: 363-369
  19. Goscianska, J., Olejnik, A., Pietrzak, R. (2013). Adsorption of L-phenylalanine onto Mesoporous Silica. Materials Chemistry and Physics, 142(2-3): 586-593
  20. Alver, E., Metin, Ü. (2012). Anionic Dye Removal from Aqueous Solutions Using Modified Zeolite: Adsorption Kinetics and Isotherm Studies. Chemical Engineering Journal, 200-202: 59-67
  21. Errais, E., Duplay, J., Darragi, F., Rabet, I. M., Aubert, A., Huber, F., & Morvan, G. (2011). Efficient Anionic Dye Adsorption on Natural Untreated Clay: Kinetic Study and Thermodynamic Parameters. Desalination, 275(1-3): 74-81
  22. Ho, Y.S., Mckay, G. (1999). Pseudo-second Order Model for Sorption Processes. Process Biochemistry, 34: 451-465
  23. Wu, F., Tseng, R., Juang, R. (2009). Initial Behavior of Intraparticle Diffusion Model Used in The Description of Adsorption Kinetics. Chemical Engineering Journal, 153: 1-8
  24. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y., Xia, L. (2013). Comparative Study of Methylene Blue Dye Adsorption onto Activated Carbon, Graphene Oxide, and Carbon Nanotubes. Chemical Engineering Research and Design, 91: 361-368
  25. Moritz, M., Geszke-Moritz, M. (2014). Application of Nanoporous Silicas as Adsorbents for Chlorinated Aromatic Compounds. A Comparative Study. Materials Science and Engineering C, 41: 42-51
  26. Hameed, B.H., Ahmad, A.L., Latiff, K.N.A. (2007). Adsorption of Basic Dye (Methylene Blue) onto Activated Carbon Prepared From Rattan Sawdust. Dyes and Pigments, 75: 143-149
  27. Senthilkumaar, S., Varadarajan, P.R., Porkodi, K., Subbhuraam, C.V. (2005). Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies. Journal of Colloid and Interface Science, 284: 78-82
  28. Yao, Y., Xu, F., Chen, M., Xu, Z., Zhu, Z. (2010). Bioresource Technology Adsorption Behavior of Methylene Blue on Carbon Nanotubes. Bioresource Technology, 101(9): 3040-3046
  29. Zhang, W., Zhou, C., Zhou, W., Lei, A., Zhang, Q., Wan, Q., Zou, B. (2011). Fast and Considerable Adsorption of Methylene Blue Dye onto Graphene Oxide. Bulletine Environmental Cantaminant Toxicology, 87: 86-90
  30. Hong, S., Wen, C., He, J., Gan, F., Ho, Y. (2009). Adsorption Thermodynamics of Methylene Blue onto Bentonite. Journal of Hazardous Materials, 167, 630-633
  31. Ghosh, D., Bhattacharyya, K.G. (2002). Adsorption of Methylene Blue on Kaolinite. Applied Clay Science, 20: 295-300
  32. Chakrabarti, S., Dutta, B.K. (2005). On The Adsorption and Diffusion of Methylene Blue in Glass Fibers. Journal of Colloid and Interface Science, 286: 807-811
  33. Ncibi, M.C., Hamissa, A.M. Ben, Fathallah, A., Kortas, M.H., Baklouti, T., Mahjoub, B., Seffen, M. (2009). Biosorptive Uptake of Methylene Blue Using Mediterranean Green Alga Enteromorpha spp. Journal of Hazardous Materials, 170: 1050-1055
  34. Vilar, J.P., Botelho, M.S., Boaventura, R.A.R. (2007). Methylene Blue Adsorption by Algal Biomass Based Materials: Biosorbents characterization and process behaviour. Journal of Hazardous Materials, 147: 120–132
  35. Vijayaraghavan, J., Pushpa, T.B., Basha, S.J.S., Jegan, J., Pushpa, T.B., Basha, S.J.S. (2015). Isotherm, Kinetics and Mechanistic Studies of Methylene Blue Biosorption onto Red Seaweed Gracilaria Corticata. Desalination and Water Treatment, 1-9
  36. Nacera, Y., Aicha, B. (2006). Equilibrium and Kinetic Modelling of Methylene Blue Biosorption by Pretreated Dead Streptomyces Rimosus: Effect of temperature. Chemical Engineering Journal, 119: 121-125
  37. Cengiz, S., Cavas, L. (2008). Removal of Methylene Blue by Invasive Marine Seaweed: Caulerpa Racemosa var. Cylindracea. Bioresource Technology, 99: 2357-2363
  38. Gong, R., Li, M., Yang, C., Sun, Y., Chen, J. (2005). Removal of Cationic Dyes From Aqueous Solution by Adsorption on Peanut Hull. Journal of Hazardous Materials B, 121: 247-250
  39. Pavan, F.A., Lima, E.C., Dias, S.L.P., Mazzocato, A.C. (2008). Methylene Blue Biosorption from aqueous Solutions by Yellow Passion Fruit Waste. Journal of Hazardous Materials, 150: 703-712
  40. Gouamid, M., Ouahrani, M.R., Bensaci, M.B. (2013). Adsorption Equilibrium, Kinetics and Thermodynamics of Methylene Blue From Aqueous Solutions Using Date Palm Leaves. Energy Procedia, 36: 898-907
  41. Vadivelan, V., Kumar, K.V. (2005). Equilibrium, Kinetics, Mechanism, and Process Design for The Sorption of Methylene Blue onto Rice Husk. Journal of Colloid and Interface Science, 286: 90-100
  42. Bulut, Y., Aydin, H. (2006). A Kinetics and Thermodynamics Study of Methylene Blue Adsorption on Wheat Shells. Desalination, 194: 259-267
  43. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H. (2005). Removal of Dyes from Aqueous Solution Using Fly Ash and Red Mud. Water Research, 39: 129-138

Last update:

No citation recorded.

Last update:

No citation recorded.