Preliminary Synthesis of Calcium Silicates using Oil Palm Leaves and Eggshells.

*Salprima Yudha S  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia
Aswin Falahudin  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia
Noor Haida Mohd Kaus  -  Schools of Chemical Sciences, Universiti Sains Malaysia, Malaysia
Sirikanjana Thongmee  -  Department of Physic, Faculty of Science, Kasetsart University, Thailand
Saiqa Ikram  -  Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), India
Asdim Asdim  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Bengkulu, Indonesia
Received: 20 Apr 2020; Revised: 3 Jul 2020; Accepted: 8 Jul 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

A new synthetic procedure is described for the synthesis of calcium silicate derivatives, using natural resources such as eggshell (ES) for calcium and oil palm leaves (OPL) for silica, which do not require prepurification. The reaction is performed by directly converting two weight ratio of the precursors, ES:3OPL and ES:6OPL, to dried-powder form by heat treatment at 900 °C for two hours. The results demonstrate that the concentration of the precursors has an effect on the morphology and crystallinity of the calcium silicate derivatives, mainly Ca2SiO4 and CaSiO3. X-ray diffraction results reveal that the reaction product obtained using a 1:3 ratio is quite pure, and mainly consisted of calcium silicate in the form of Ca2SiO4. The CaSiO3 was also identified in ES:6OPL, together with a small amount of excess non-reacted crystalline silica. Furthermore, a scanning electron microscopy analysis shows that both reaction products have a coarse surface. Copyright © 2020 BCREC Group. All rights reserved


Keywords: eggshell; oil palm leaves; silica; calcium silicate

Article Metrics:

  1. Puntharod, R., Sankram, C., Chantaramee, N., Pookmane, P., Haller, K.J. (2013). Synthesis and characterization of wollastonite from egg shell and diatomite by the hydrothermal method. Journal of Ceramic Processing Research, 14(2), 198−201.
  2. Tiimob, B., Apalangya, V., Samuel, T., Jeelani, S., Rangari, V. (2015). Synthesis, Characterization and In vitro Cytotoxicity Assessment of Eggshell-derived β-CaSiO3 Nano Biomaterial. British Journal of Applied Science & Technology, 8(2), 180−193. DOI: 10.9734/BJAST/2015/16811
  3. Ismail, H., Shamsudin, R., Hamid, M.A.A., Jalar, A. (2013). Synthesis and characterization of nano-wollastonite from rice husk ash and limestone. Materials Science Forum, 756, 43−47. DOI: 10.4028/
  4. Ismail, H., Shamsudin, R., Hamid, M.A.A. (2016). Effect of autoclaving and sintering on the formation of β-wollastonite. Materials Science and Engineering C, 58, 1077–1081. DOI: 10.1016/j.msec.2015.09.030
  5. Shamsudin, R., Ismail, H., Hamid, M.A.A., Awang, R. (2016). Characteristics of wollastonite synthesized from rice husk and rice straw. Solid State Science and Tech., 24(1), 61−69.
  6. Hu, Y., Xiao, Z., Wang, H., Ye, C., Wu, Y., Xu, S. (2019). Fabrication and characterization of porous CaSiO3 ceramics. Ceramics International, 45(3), 3710−3714. DOI: 10.1016/j.ceramint.2018.11.034
  7. Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E., Gazeev, V.M. (2011). Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallography Reports, 56(2), 210–220. DOI: 10.1134/S1063774511020209
  8. Choudhary, R., Venkatraman, S.K., Rana, A., Swamiappan, S. (2016). In vitro bioactivity studies of larnite and larnite/chitin composites prepared from bio-waste for biomedical applications. Bulletin of Material Science, 39(5), 1213–1221. DOI: 10.1007/s12034-016-1245-4
  9. Lani, N.S., Ngadi, N., Yahya, N.Y., Rahman, R.A. (2016). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. Journal of Cleaner Production, 146, 116−124. DOI: 10.1016/j.jclepro.2016.06.058
  10. Chen, C.-C., Ho, C.-C., Lin, S.-Y., Ding, S.-J. (2014). Green synthesis of calcium silicate bioceramic powders. Ceramics International, 41(4), 5445−5453. DOI: 10.1016/j.ceramint.2014.12.112
  11. Meena, V.D., Dotaniya, M.L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., Rao, A.S. (2014). A Case for Silicon Fertilization to Improve Crop Yields in Tropical Soils. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 84(3), 505–518. DOI: 10.1007/s40011-013-0270-y
  12. Ku, H.-H., Hayashi. K., Agbisit, R., Villegas-Pangga, G. (2017). Effects of calcium silicate on nutrient use of lowland rice and greenhouse gas emission from paddy soil in the philippines under alternating wetting and drying. Pedosphere, 30(4), 535-543. DOI: 10.1016/S1002-0160(17)60401-6
  13. Dai, Y., Liu, H., Liu, B., Wang, Z., Li, Y., Zhou, G. (2015). Porous b-Ca2SiO4 ceramic scaffolds for bone tissue engineering: in vitro and in vivo characterization. Ceramics International, 41(4), 5894–5902. DOI: 10.1016/j.ceramint.2015.01.021
  14. Onoja E., Attan, N., Chandren, S., Razak, F.I.A., Keyon, A.S.A., Mahat, N.A., Wahab, R.A. (2017). Insights into the physicochemical properties of the Malaysian oil palm leaves as an alternative source of industrial materials and bioenergy, Malaysian Journal of Fundamental and Applied Sciences, 13(4), 623−631.
  15. Onoja, E., Chandren, S., Ilyana, F., Razak, A., Wahab, R.A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of Biotechnology, 283(10), 81−96. DOI: 10.1016/j.jbiotec.2018.07.036
  16. Khalil, H.P.S.A., Fizree, H.M., Jawaid, M., Alattas, O.S. (2011). Preparation and characterization of nanostructured materials from oil palm ash: a bioagricultural waste from oil palm mill. BioResources, 6(4), 4537−4546.
  17. Mehrali, M., Shirazi, S.F.S., Baradaran, S., Mehrali, M., Metselaar, H.S.C., Kadri, N.A.B, Osman, N.A.A. (2014). Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrasonics Sonochemistry, 21, 735–742. DOI: 10.1016/j.ultsonch.2013.08.012
  18. Ok, Y.S., Lee, S.S., Jeon, W.-T., Oh, S.-E., Usman, A.R.A., Moon, D.H. (2011). Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. nviron Geochem Health, 33, 31–39. DOI: 10.1007/s10653-010-9362-2
  19. Choudhary, R., Koppala, S., Swamiappan, S. (2015). Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies, 3(2), 173–177. DOI: 10.1016/j.jascer.2015.01.002
  20. Zaman, T., Mostari, M.S., Al Mahmood, M.A., Rahman, M.S. (2018). Evolution and characterization of eggshell as a potential candidate of raw material. Cerâmica, 64, 236−241. DOI: 10.1590/0366-69132018643702349
  21. Yu, K., Wang J., Song, K., Wang, X., Liang, C., Dou, Y. (2019). Hydrothermal synthesis of cellulose-derived carbon nanospheres from corn straw as anode materials for lithium ion batteries. Nanomaterials, 9(1), 93 (13 pages). DOI: 10.3390/nano9010093
  22. Arslan, Y., Kendüzler, E., Adigüzel, V.T., Tomul, F. (2019). The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Journal of Natural and Applied Sciences, 23(2), 727−737. DOI: 10.19113/sdufenbed.527602
  23. Lakshmi, R., Velmurugan, V., Sasikumar, S. (2013). Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combustion Science and Technology, 185, 1777–1785. DOI: 10.1080/00102202.2013.835308
  24. Lugo, G.J., Mazón, P., De Aza, P.N. (2015). Phase transitions in single phase Si–Ca–P-based ceramic under thermal treatment. Journal of the European Ceramic Society, 35, 3693–3700. DOI: 10.1016/j.jeurceramsoc.2015.04.036
  25. Choudhary, R., Koppala, S., Srivastava, A., Sasikumar, S. (2015). In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study. Journal of Sol-Gel Science Technology, 74, 631–640. DOI: 10.1007/s10971-015-3642-3
  26. Booncharoen, W., Jaroenworaluck, A., Stevens, R. (2011). A synthesis route to nanoparticle dicalcium silicate for biomaterials research. Journal of Biomedical Materials Research B: Applied Biomaterials, 99B(2), 230−238. DOI: 10.1002/jbm.b.31890
  27. Kontoleontos, F., Tsakiridis, P., Marinos, A., Katsiotis, N., Kaloidas, V., Katsioti, M. (2013). Dry-grinded Ultrafine Cements Hydration. Physicochemical and Microstructural Characterization. Materials Research, 16(2), 404−416. DOI: 10.1590/S1516-14392013005000014
  28. Khachani, M., El Hamidi, A., Halim, M., Arsalane, S. (2014). Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2. J. Mater. Environ. Sci., 5(2), 615−624.
  29. Kale, K.B., Raskar, R.Y., Rane, V.H., Gaikwad, A.G. (2012). Preparation and characterization of calcium silicate for CO2 sorption. Adsorption Science & Technology, 30(10), 817−830. DOI: 10.1260%2F0263-6174.30.10.817
  30. Adams, L.A., Essien, E.R., Kaufmann, E.E. (2018). A new route to sol-gel crystalline wollastonite bioceramic, Journal of Asian Ceramic Societies, 6(2), 132–138. DOI: 10.1080/21870764.2018.1480685
  31. Zhao, C., Wang, G. (2015). The Melting Reaction Mechanism of NaOH in Decomposing Ca2SiO4. Mineral Processing and Extractive Metallurgy Review: An International Journal, 36(6), 385−390. DOI: 10.1080/08827508.2015.1019067
  32. Washizawa, N., Narusawa, H., Tamaki, Y., Miyazaki, T. (2012). Production of a calcium silicate cements material from alginate impression material. Dental Materials Journal, 31(4), 629–634. DOI: 10.4012/dmj.2012-027
  33. Gou, Z., Chang, J., Zhai, W. (2005). Preparation and characterization of novel bioactive dicalcium silicate ceramics. Journal of the European Ceramic Society, 25, 1507–1514. DOI: 10.1016/j.jeurceramsoc.2004.05.029
  34. Vichaphund, S., Kitiwan, M., Atong, D., Thavorniti, P. (2011). Microwave synthesis of wollastonite powder from eggshells, Journal of the European Ceramic Society, 31, 2435–2440. DOI: 10.1016/j.jeurceramsoc.2011.02.026

No citation recorded.