Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst

Dhaifallah Aldhayan -  Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
*Ahmed Aouissi -  Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
Received: 27 Oct 2016; Published: 30 Apr 2017.
Open Access Copyright (c) 2017 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD) and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers. Copyright © 2017 BCREC GROUP. All rights reserved

Received: 27th October 2016; Revised: 21st December 2016; Accepted: 22nd December 2016

How to Cite: Aldhayan, D., Aouissi, A. (2017). Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1): 119-126 (doi:10.9767/bcrec.12.1.758.119-126)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.758.119-126

 

Keywords
Isobutene; Oligomerization; Clean gasoline; Clay catalyst; Solid acid catalyst

Article Metrics:

  1. Burnes, E., Wichelns, D., Hagen, J.W. (2005). Economic and Policy Implications of Public Support for Ethanol Production in California's San Joaquin Valley. Energy Policy, 33: 1155-1167.
  2. Rossini, S. (2003). The Impact of Catalytic Materials on Fuel Reformulation. Catal. Today, 77: 467-484.
  3. Golombok, M., De Bruijn, J. (2001). Catalysts for Producing High Octane-Blending Value Olefins for Gasoline. Appl. Catal. A, 208: 47-53.
  4. Chen, G., Li, J., Yang, X., Wu, Y. (2006). Surface-Appropriate Lipophobicity-Application in Isobutene Oligomerization over Teflon-Modified Silica-Supported 12-Silicotungstic Acid. Appl. Catal. A, 310: 16-23.
  5. Mantilla, A., Ferrat, G., Tzompantzi, F., López-Ortega, A., Romero, E., Ortiz-Islas, E, Gómez R., Torres, M. (2004). Room Temperature Olefins Oligomerization over Sulfated Titania. Chem. Commun., 13: 1498-1499.
  6. Tzompantzi, F., Manríquez, M.E., Padilla, J.M., Del Angel, G., Gómez, R., Mantilla, A. (2008). One Pot Preparation of NiO/ZrO2 Sulfated Catalysts and Its Evaluation for the Isobutene Oligomerization. Catal. Today, 133: 154-159.
  7. Lewis, J.M., Kydd, R.A. (1991). Adsorption Mechanism of Phosphoric Acid on g-Alumina. J. Catal., 132: 465-471.
  8. Mantilla, A., Tzompantzi, F., Ferrat, G., Lopez-Ortega, A., Alfaro, S., Gómez, R., Torres, M. (2005). Oligomerization of Isobutene on Sulfated Titania: Effect of Reaction Conditions on Selectivity. Catal. Today, 107: 707-712.
  9. Lee, J.S., Yoon, J.W., Halligudi, S.B., Chang, J.S., Jhung, S.H. (2009). Trimerization of Isobutene over WOx/ZrO2 Catalysts. Appl. Catal. A, 366: 299-303.
  10. Chellappa, A.S., Miller, R.C., Thompson, W.J. (2001). Supercritical Alkylation and Butene Imerization over Sulphatedzirconia and Iron–Manganese Promoted Sulphated Zirconia Catalysts. Appl. Catal. A, 209: 359-374.
  11. Zhang, J., Kanno, M., Zhang, J., Ohnishi, R., Toriyabe, K., Matsuhashi, H., Kamiya, Y. (2010). Preferential Oligomerization of Isobutene in a Mixture of Isobutene and 1-Butene over Sodium-Modified 12-Tungstosilicic Acid Supported on Silica. J. Mol. Catal. A, 326: 107-112.
  12. Yoon, J.W., Chang, J.S., Lee, H.D., Kim, T.J., Jhung, S.H. (2007). Trimerization of Isobutene over a Zeolite Beta Catalyst. J. Catal., 245: 253-256.
  13. Hauge, K., Bergene, E., Chen D, Fredriksen G.R, Holmen, A. (2005). Oligomerization of Isobutene over Solid Acid Catalysts. Catal. Today, 100: 463-466
  14. Yoon, J.W., Jhung, S.H., Choo, D.H., Lee, S.J., Lee, K.Y., Chang, J.S. (2008). Oligomerization of Isobutene over Dealuminated Y Zeolite Catalysts. Appl. Catal. A, 337: 73-77.
  15. Makó, É., Senkár, Z., Kristóf, J., Vágvölgyi, V. (2006). Surface Modification of Mechano-Chemically Activated Kaolinites by Selective Leaching. J. Colloid Interf. Sci., 294: 362-370.
  16. Volzone, C, Ortiga, J. (2011). SO2 Gas Adsorption by Modified Kaolin Clays: Influence of Previous Heating and Time Acid Treatments. J. Environ. Manage., 92: 2590-2595.
  17. Kasprzhitskii, A., Lazorenko, G., Yavna, V., Daniel, Ph. (2016). DFT Theoretical and FT-IR Spectroscopic Investigations of the Plasticity of Clay Minerals Dispersions. J. Mol. Struct., 1109: 97-105.
  18. Morsy, F.A., El-Sherbiny, S., Hassan, M.S., Mohammed, H.F. (2014). Modification and Evaluation of Egyptian Kaolinite as Pigment for Paper Coating. Powder Technol., 264: 430-438.
  19. Bakhti, A., Derriche, Z., Iddou, A., Larid, M. (2001). A Study of the Factors Controlling the Adsorption of Cr(III) on Modified Montmorillonites, Eur. J. Soil Sci,, 52: 683-692
  20. Frost, R.L, Vassallo, A.M. (1996). The Dehyddroxylation of the Kaolinite Clay Minerals using Infrared Emission Spectroscopy. Clays Clay Miner., 44: 635-651.
  21. Belver, C., Munoz, M.A.B., Vicente, M.A. (2002). Chemical Activation of a Kaolinite under Acid and Alkaline Conditions. Chem. Mater., 14: 2033-2043.
  22. Fan, Y., Wang, Q., Yang, X., Yao, J., Wang, G. (2009). Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO. Chin. J. Chem. Eng., 17 (5): 883-886.
  23. Vaculíková, L., Plevová, E. (2005). Identification of Clay Minerals and Micas in Sedimentary Rocks. Acta Geodyn. Geomater., 2: 167-175.
  24. Mohsen, Q., El-Maghraby, A. (2010). Characterization and Assessment of Saudi Clay Raw Material at Different Area. Arabian J. Chem., 3: 271-277.
  25. Gasparini, E., Tarantino, S.C., Ghigna, P., Pia Riccardi, M., Cedillo-González, EI., Siligardi, C., Zema, M. (2013). Thermal Dehydroxylation of Kaolinite under Isothermal Conditions. Appl. Clay Sci., 80: 417-425.
  26. Volzone, C., Ortiga, J. (2006). Removal of Gases by Thermal-Acid Leached Kaolinitic Clays: Influence of Mineralogical Composition. Appl. Clay Sci., 32: 87-93.
  27. Brown, G., Brindley, G.W. (1980) X-Ray Diffraction Procedures for Clay Mineral Identification. Pp. 305-359 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London.
  28. Panda, A.K., Mishra, B.G. (2010). Effect of Sulphuric Acid Treatment on the Physico-Chemical Characteristics of Kaolin Clay. Colloid Surface A: Physicochem Eng. Aspects, 363: 98-104.
  29. Sharma, M.M. (1995). Some Novel Aspects of Cationic Ion-Exchange Resins as Catalysts. React. Funct. Polym., 26: 3-23.
  30. Nkosi, B., Ng, F.T.T., Rempel, G.L. (1997). The Oligomerization of 1-Butene using Nay Zeolite Ion-Exchanged with Different Nickel Precursor Salts. Appl. Catal. A, 161: 153-166.
  31. Yang, S., Liu, Z., Meng, X., Xu, C. (2009). Oligomerization of Isobutene Catalyzed by Iron(III) Chloride Ionic Liquids. Energy Fuel, 23: 70-73.
  32. Liu, S., Shang, J., Zhang, S., Yang, B., Deng, Y. (2013). Highly Efficient Trimerization of Isobutene over Silica Supported Chloroaluminate Ionic Liquid using C4 Feed. Catal. Today, 200: 41-48.
  33. Yoon, J.W., Chang, J.S., Lee, H.D., Kim, T.J., Jhung, S.H. (2006). Trimerization of Isobutene over Cation Exchange Resins: Effect of Physical Properties of the Resins and Reaction Conditions. J. Mol. Catal. A, 260: 181-186.