skip to main content

Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst

Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia

Received: 27 Oct 2016; Revised: 21 Dec 2016; Accepted: 22 Dec 2016; Available online: 13 Feb 2017; Published: 30 Apr 2017.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2017 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD) and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers. 

Fulltext View|Download
Keywords: Isobutene; Oligomerization; Clean gasoline; Clay catalyst; Solid acid catalyst
Funding: Deanship of Scientific Research at King Saud University

Article Metrics:

  1. Burnes, E., Wichelns, D., Hagen, J.W. (2005). Economic and Policy Implications of Public Support for Ethanol Production in California's San Joaquin Valley. Energy Policy, 33: 1155-1167
  2. Rossini, S. (2003). The Impact of Catalytic Materials on Fuel Reformulation. Catal. Today, 77: 467-484
  3. Golombok, M., De Bruijn, J. (2001). Catalysts for Producing High Octane-Blending Value Olefins for Gasoline. Appl. Catal. A, 208: 47-53
  4. Chen, G., Li, J., Yang, X., Wu, Y. (2006). Surface-Appropriate Lipophobicity-Application in Isobutene Oligomerization over Teflon-Modified Silica-Supported 12-Silicotungstic Acid. Appl. Catal. A, 310: 16-23
  5. Mantilla, A., Ferrat, G., Tzompantzi, F., López-Ortega, A., Romero, E., Ortiz-Islas, E, Gómez R., Torres, M. (2004). Room Temperature Olefins Oligomerization over Sulfated Titania. Chem. Commun., 13: 1498-1499
  6. Tzompantzi, F., Manríquez, M.E., Padilla, J.M., Del Angel, G., Gómez, R., Mantilla, A. (2008). One Pot Preparation of NiO/ZrO2 Sulfated Catalysts and Its Evaluation for the Isobutene Oligomerization. Catal. Today, 133: 154-159
  7. Lewis, J.M., Kydd, R.A. (1991). Adsorption Mechanism of Phosphoric Acid on g-Alumina. J. Catal., 132: 465-471
  8. Mantilla, A., Tzompantzi, F., Ferrat, G., Lopez-Ortega, A., Alfaro, S., Gómez, R., Torres, M. (2005). Oligomerization of Isobutene on Sulfated Titania: Effect of Reaction Conditions on Selectivity. Catal. Today, 107: 707-712
  9. Lee, J.S., Yoon, J.W., Halligudi, S.B., Chang, J.S., Jhung, S.H. (2009). Trimerization of Isobutene over WOx/ZrO2 Catalysts. Appl. Catal. A, 366: 299-303
  10. Chellappa, A.S., Miller, R.C., Thompson, W.J. (2001). Supercritical Alkylation and Butene Imerization over Sulphatedzirconia and Iron–Manganese Promoted Sulphated Zirconia Catalysts. Appl. Catal. A, 209: 359-374
  11. Zhang, J., Kanno, M., Zhang, J., Ohnishi, R., Toriyabe, K., Matsuhashi, H., Kamiya, Y. (2010). Preferential Oligomerization of Isobutene in a Mixture of Isobutene and 1-Butene over Sodium-Modified 12-Tungstosilicic Acid Supported on Silica. J. Mol. Catal. A, 326: 107-112
  12. Yoon, J.W., Chang, J.S., Lee, H.D., Kim, T.J., Jhung, S.H. (2007). Trimerization of Isobutene over a Zeolite Beta Catalyst. J. Catal., 245: 253-256
  13. Hauge, K., Bergene, E., Chen D, Fredriksen G.R, Holmen, A. (2005). Oligomerization of Isobutene over Solid Acid Catalysts. Catal. Today, 100: 463-466
  14. Yoon, J.W., Jhung, S.H., Choo, D.H., Lee, S.J., Lee, K.Y., Chang, J.S. (2008). Oligomerization of Isobutene over Dealuminated Y Zeolite Catalysts. Appl. Catal. A, 337: 73-77
  15. Makó, É., Senkár, Z., Kristóf, J., Vágvölgyi, V. (2006). Surface Modification of Mechano-Chemically Activated Kaolinites by Selective Leaching. J. Colloid Interf. Sci., 294: 362-370
  16. Volzone, C, Ortiga, J. (2011). SO2 Gas Adsorption by Modified Kaolin Clays: Influence of Previous Heating and Time Acid Treatments. J. Environ. Manage., 92: 2590-2595
  17. Kasprzhitskii, A., Lazorenko, G., Yavna, V., Daniel, Ph. (2016). DFT Theoretical and FT-IR Spectroscopic Investigations of the Plasticity of Clay Minerals Dispersions. J. Mol. Struct., 1109: 97-105
  18. Morsy, F.A., El-Sherbiny, S., Hassan, M.S., Mohammed, H.F. (2014). Modification and Evaluation of Egyptian Kaolinite as Pigment for Paper Coating. Powder Technol., 264: 430-438
  19. Bakhti, A., Derriche, Z., Iddou, A., Larid, M. (2001). A Study of the Factors Controlling the Adsorption of Cr(III) on Modified Montmorillonites, Eur. J. Soil Sci,, 52: 683-692
  20. Frost, R.L, Vassallo, A.M. (1996). The Dehyddroxylation of the Kaolinite Clay Minerals using Infrared Emission Spectroscopy. Clays Clay Miner., 44: 635-651
  21. Belver, C., Munoz, M.A.B., Vicente, M.A. (2002). Chemical Activation of a Kaolinite under Acid and Alkaline Conditions. Chem. Mater., 14: 2033-2043
  22. Fan, Y., Wang, Q., Yang, X., Yao, J., Wang, G. (2009). Synthesis of Didodecyl Carbonate via Transesterification Catalyzed by KF/MgO. Chin. J. Chem. Eng., 17 (5): 883-886
  23. Vaculíková, L., Plevová, E. (2005). Identification of Clay Minerals and Micas in Sedimentary Rocks. Acta Geodyn. Geomater., 2: 167-175
  24. Mohsen, Q., El-Maghraby, A. (2010). Characterization and Assessment of Saudi Clay Raw Material at Different Area. Arabian J. Chem., 3: 271-277
  25. Gasparini, E., Tarantino, S.C., Ghigna, P., Pia Riccardi, M., Cedillo-González, EI., Siligardi, C., Zema, M. (2013). Thermal Dehydroxylation of Kaolinite under Isothermal Conditions. Appl. Clay Sci., 80: 417-425
  26. Volzone, C., Ortiga, J. (2006). Removal of Gases by Thermal-Acid Leached Kaolinitic Clays: Influence of Mineralogical Composition. Appl. Clay Sci., 32: 87-93
  27. Brown, G., Brindley, G.W. (1980) X-Ray Diffraction Procedures for Clay Mineral Identification. Pp. 305-359 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London
  28. Panda, A.K., Mishra, B.G. (2010). Effect of Sulphuric Acid Treatment on the Physico-Chemical Characteristics of Kaolin Clay. Colloid Surface A: Physicochem Eng. Aspects, 363: 98-104
  29. Sharma, M.M. (1995). Some Novel Aspects of Cationic Ion-Exchange Resins as Catalysts. React. Funct. Polym., 26: 3-23
  30. Nkosi, B., Ng, F.T.T., Rempel, G.L. (1997). The Oligomerization of 1-Butene using Nay Zeolite Ion-Exchanged with Different Nickel Precursor Salts. Appl. Catal. A, 161: 153-166
  31. Yang, S., Liu, Z., Meng, X., Xu, C. (2009). Oligomerization of Isobutene Catalyzed by Iron(III) Chloride Ionic Liquids. Energy Fuel, 23: 70-73
  32. Liu, S., Shang, J., Zhang, S., Yang, B., Deng, Y. (2013). Highly Efficient Trimerization of Isobutene over Silica Supported Chloroaluminate Ionic Liquid using C4 Feed. Catal. Today, 200: 41-48
  33. Yoon, J.W., Chang, J.S., Lee, H.D., Kim, T.J., Jhung, S.H. (2006). Trimerization of Isobutene over Cation Exchange Resins: Effect of Physical Properties of the Resins and Reaction Conditions. J. Mol. Catal. A, 260: 181-186

Last update:

No citation recorded.

Last update:

No citation recorded.