Product Distribution of Chemical Product Using Catalytic Depolymerization of Lignin

Damayanti Damayanti  -  Department of Chemical Engineering and Material Science, Yuan-Ze University, Taiwan, Province of China
Yeni Ria Wulandari  -  Department of Chemical Engineering and Material Science, Yuan-Ze University, Taiwan, Province of China
*Ho-Shing Wu scopus  -  Department of Chemical Engineering and Material Science, Yuan-Ze University, Taiwan, Province of China
Received: 18 Feb 2020; Revised: 21 May 2020; Accepted: 22 May 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Lignin depolymerization is a very promising process which can generate value-added products from lignin raw materials. The main objective of lignin depolymerization is to convert the complex molecules of lignin into small molecules. Nevertheless, lignin is natural polymer which the molecules of lignin are extremely complicated due to their natural variability, and it will be a big challenge to depolymerize lignin, particularly high water yield. The various technology and methods are developed to depolymerize lignin into biofuels or bio chemical products including acid/base/metallic catalyzed lignin depolymerization, pyrolysis of lignin, hydroprocessing, and gasification. The distribution and yield of chemical products depend on the reaction operation condition, type of lignin and kind of catalyst. The reactor type, product distributions and specific chemicals (benzene, toluene, xylene, terephthalic acid) production of lignin depolymerization are intensive discussed in this review. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Depolymerization; Catalyst; Lignin; Reactor; Product distribution; Chemical catalysis

Article Metrics:

  1. Rajesh Banu, J., Kavitha, S., Yukesh Kannah, R., Poornima Devi, T., Gunasekaran, M., Kim, S.-H., Kumar, G.A. (2019). Review on biopolymer production via lignin valorization. Bioresource Technology, 290, 121790. doi: 10.1016/j.biortech.2019.121790
  2. Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R., Xu, C. (2020). Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renewable and Sustainable Energy Reviews, 123, 109768. doi: 10.1016/j.rser.2020.109768
  3. Luterbacher, J.S., Shuai, L. (2019). Production of Monomers from Lignin During Depolymerization of Lignocellulose-Containing Composition. US Patent 2019/0127304 A1.
  4. Mishra, P.K., Ekielski, A. (2019). The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. Nanomaterials, 9(2), 243, doi: 10.3390/nano9020243
  5. Chio, C., Sain, M., Qin, W. (2019). Lignin utilization: A review of lignin depolymerization from various aspects. Renewable and Sustainable Energy Reviews, 107, 232-249. doi: 10.1016/j.rser.2019.03.008
  6. Supanchaiyamat, N., Jetsrisuparb, K., Knijnenburg, J.T.N., Tsang, D.C.W., Hunt, A.J. (2019). Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource Technology, 272, 570-581. doi: 10.1016/j.biortech.2018.09.139
  7. Damayanti, D., Wu, H.S. (2017). Pyrolysis kinetic of alkaline and dealkaline lignin using catalyst. Journal of Polymer Research, 25, 7. doi: 10.1007/s10965-017-1401-6
  8. Maldhure, A.V., Ekhe, J.D. (2013). Pyrolysis of purified kraft lignin in the presence of AlCl3 and ZnCl=. Journal of Environmental Chemical Engineering, 1, 844-849. doi: 10.1016/j.jece.2013.07.026
  9. Rößiger, B., Unkelbach, G., Pufky-Heinrich, D. (2018). Base-catalyzed depolymerization of lignin: History, challenges and perspectives. In Matheus Poletto (Ed.). Lignin-Trends and Applications, 99-120, InTech Publisher.
  10. Meng, Y., Lu, J., Cheng, Y., Li, Q., Wang, H. (2019). Lignin-based hydrogels: A review of preparation, properties, and application. International Journal of Biological Macromolecules, 135, 1006-1019. doi: 10.1016/j.ijbiomac.2019.05.198
  11. Lee, H., Jae, J., Lee, H.W., Park, S., Jeong, J., Lam, S.S., Park, Y.-K. (2020). Production of bio-oil with reduced polycyclic aromatic hydrocarbons via continuous pyrolysis of biobutanol process derived waste lignin. Journal of Hazardous Materials, 384, 121231, doi: 10.1016/j.jhazmat.2019.121231
  12. Liu, C., Wu, S., Zhang, H., Xiao, R. (2019). Catalytic oxidation of lignin to valuable biomass-based platform chemicals: A review. Fuel Processing Technology, 191, 181-201. doi: 10.1016/j.fuproc.2019.04.007
  13. Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A. (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renewable and Sustainable Energy Reviews, 21, 506-523. doi: 10.1016/j.rser.2012.12.022
  14. Björkman, A. (1956). Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk papperstidning, 59, 477-485.
  15. Pandey, M.P., Kim, C.S. (2011). Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chemical Engineering & Technology, 34, 29-41, doi: 10.1002/ceat.201000270
  16. Abdelaziz, O.Y., Ravi, K., Mittermeier, F., Meier, S., Riisager, A., Lidén, G., Hulteberg, C.P. (2019). Oxidative Depolymerization of Kraft Lignin for Microbial Conversion. ACS Sustainable Chemistry & Engineering, 7, 11640-11652. doi: 10.1021/acssuschemeng.9b01605
  17. Yasuda, S., Asano, K. (2000). Preparation of strongly acidic cation-exchange resins from gymnosperm acid hydrolysis lignin. Journal of Wood Science, 46, 477-479. doi: 10.1007/bf00765807
  18. Wang, H.-M., Wang, B., Wen, J.-L., Yuan, T.-Q., Sun, R.-C. (2017). Structural Characteristics of Lignin Macromolecules from Different Eucalyptus Species. ACS Sustainable Chemistry & Engineering, 5, 11618-11627. doi: 10.1021/acssuschemeng.7b02970
  19. Wang, H., Tucker, M., Ji, Y. (2013). Recent Development in Chemical Depolymerization of Lignin: A Review. Journal of Applied Chemistry, 838645. doi: 10.1155/2013/838645
  20. Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110, 3552-3599. doi: 10.1021/cr900354u
  21. Chakar, F.S., Ragauskas, A.J. (2004). Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products, 20, 131-141. doi: 10.1016/j.indcrop.2004.04.016
  22. Svensson, S. (2008). Minimizing the sulphur content in Kraft lignin. PhD Thesis. Mälardalen University.
  23. Malatji, P. (2009). Processing of wood and agricultural biomass for gasification. Master Thesis. University of Stellenbosch.
  24. Podgorbunskikh, E.M., Bychkov, A.L., Ryabchikova, E.I., Lomovsky, O.I. (2020). The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass. Molecules, 25(4), 995. doi: 10.3390/molecules25040995
  25. Chen, H. (2014). Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose: Theory and Practice, Springer Netherlands: Dordrecht. doi: 10.1007/978-94-007-6898-7_2,pp.25-71
  26. Shuhui, Y. (2001). Plant fiber chemistry; Beijing: China Light Industry Press.
  27. Tao, Y., Guan, Y. (2003). Study of chemical composition of lignin and its application. Journal of Cellulose Science and Technology, 11, 42-55.
  28. Yang, A.-L., Jiang, W.-J. (2007). Studies on a cationically modified quaternary ammonium salt of lignin. Chemical Research in Chinese Universities, 23, 479-482.
  29. Huber, G.W., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106, 4044-4098. doi: 10.1021/cr068360d
  30. Lattner, J.R., Xu, T., Keusenkothen, P.F. (2019). Conversion of lignin to fuels and aromatics.
  31. Fernandez, A., Saffe, A., Pereyra, R., Mazza, G., Rodriguez, R. (2016). Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Applied Thermal Engineering, 106, 1157-1164. doi: 10.1016/j.applthermaleng.2016.06.084
  32. Li, C., Zhao, X., Wang, A., Huber, G.W., Zhang, T. (2015). Catalytic Transformation of Lignin for the Production of Chemicals and Fuels. Chemical Reviews, 115, 11559-11624. doi: 10.1021/acs.chemrev.5b00155
  33. Ponnusamy, V.K., Nguyen, D.D., Dharmaraja, J., Shobana, S., Banu, J.R., Saratale, R.G., Chang, S.W., Kumar, G. (2019). A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresource Technology, 271, 462-472. doi: 10.1016/j.biortech.2018.09.070
  34. Mullen, C.A., Boateng, A.A. (2010). Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Processing Technology, 91, 1446-1458. doi: 10.1016/j.fuproc.2010.05.022
  35. Nzihou, A., Stanmore, B., Lyczko, N., Minh, D.P. (2019). The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review. Energy, 170, 326-337. doi: 10.1016/j.energy.2018.12.174
  36. Roberts, V.M., Stein, V., Reiner, T., Lemonidou , A., Li, X., Lercher, J.A. (2011). Towards Quantitative Catalytic Lignin Depolymerization. Chemistry – A European Journal, 17, 5939-5948. doi: 10.1002/chem.201002438
  37. Erdocia, X., Prado, R., Corcuera, M.Á., Labidi, J. (2014). Base catalyzed depolymerization of lignin: Influence of organosolv lignin nature. Biomass and Bioenergy, 66, 379-386. doi: 10.1016/j.biombioe.2014.03.021
  38. Van Es, D.S., van der Klis, F., Van Haveren, J., Gosselink, R.J.A. (2014). Method for the depolymerization of lignin. European Patent, WO2014168473 (A1)
  39. Chen, J.Q., Koch, M.B. (2014). Combination of hydrogenation and base catalyzed depolymerization for lignin conversion. US Patent 8,871,989
  40. Katahira, R., Mittal, A., McKinney, K., Chen, X., Tucker, M.P., Johnson, D.K., Beckham, G.T. (2016). Base-Catalyzed Depolymerization of Biorefinery Lignins. ACS Sustainable Chemistry & Engineering, 4, 1474-1486. doi: 10.1021/acssuschemeng.5b01451
  41. Hagglund, E., Bjorkman, C. (1924). Lignin hydrochloride. Biochem. Z, 147, 74-89.
  42. Binder, J.B., Gray, M.J., White, J.F., Zhang, Z.C., Holladay, J.E. (2009). Reactions of lignin model compounds in ionic liquids. Biomass and Bioenergy, 33, 1122-1130. doi: 10.1016/j.biombioe.2009.03.006
  43. Güvenatam, B., Heeres, E.H.J., Pidko, E.A., Hensen, E.J.M. (2016). Lewis acid-catalyzed depolymerization of soda lignin in supercritical ethanol/water mixtures. Catalysis Today, 269, 9-20. doi: 10.1016/j.cattod.2015.08.039
  44. Güvenatam, B., Heeres, E.H.J., Pidko, E.A., Hensen, E.J.M. (2016). Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol. Catalysis Today, 259, 460-466. doi: 10.1016/j.cattod.2015.03.041
  45. Deepa, A.K., Dhepe, P.L. (2014). Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Advances, 4, 12625-12629. doi: 10.1039/C3RA47818A
  46. Yang, L., Li, Y., Savage, P.E. (2014). Hydrolytic Cleavage of C–O Linkages in Lignin Model Compounds Catalyzed by Water-Tolerant Lewis Acids. Industrial & Engineering Chemistry Research, 53, 2633-2639. doi: 10.1021/ie403545n
  47. Gasson, J.R., Forchheim, D., Sutter, T., Hornung, U., Kruse, A., Barth, T. (2012). Modeling the Lignin Degradation Kinetics in an Ethanol/Formic Acid Solvolysis Approach. Part 1. Kinetic Model Development. Industrial & Engineering Chemistry Research, 51, 10595-10606. doi: 10.1021/ie301487v
  48. Elliott, D.C.T. (1983). Hydrodeoxygenation of phenolic components of wood-derived oil. In Proceedings of Am. Chem. Soc. Div. Pet. Chem., p. 667.
  49. Ben, H., Ragauskas, A.J. (2011). Pyrolysis of Kraft Lignin with Additives. Energy & Fuels, 25, 4662-4668. doi: 10.1021/ef2007613
  50. Brebu, M., Cazacu, G., Chirila, O. (2011). Pyrolysis of lignin - a potential method for obtaining chemcials and/or fuels. Celluose Chemistry and Technology, 45, 43-50.
  51. Meier, D., Faix, O. (1999). State of the art of applied fast pyrolysis of lignocellulosic materials — a review. Bioresource Technology, 68, 71-77. doi: 10.1016/S0960-8524(98)00086-8
  52. Mohan, D., Pittman, C.U., Steele, P.H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels, 20, 848-889. doi: 10.1021/ef0502397
  53. Uçar, S., Karagöz, S. (2009). The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis, 84, 151-156. doi: 10.1016/j.jaap.2009.01.005
  54. Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, 651-671. doi: 10.1016/S0196-8904(03)00177-8
  55. Charon, N., Ponthus, J., Espinat, D., Broust, F., Volle, G., Valette, J., Meier, D. (2015). Multi-technique characterization of fast pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 116, 18-26. doi: 10.1016/j.jaap.2015.10.012
  56. Lei, M., Wu, S., Liang, J., Liu, C. (2019). Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis. Journal of Analytical and Applied Pyrolysis, 138, 249-260. doi: 10.1016/j.jaap.2019.01.004
  57. Cho, J., Chu, S., Dauenhauer, P.J., Huber, G.W. (2012). Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chemistry, 14, 428-439.
  58. Ma, Z., Troussard, E., van Bokhoven, J.A. (2012). Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Applied Catalysis A: General, 423–424, 130-136. doi: 10.1016/j.apcata.2012.02.027
  59. Li, X., Su, L., Wang, Y., Yu, Y., Wang, C., Li, X., Wang, Z. (2012). Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Frontiers of Environmental Science & Engineering, 6, 295-303. doi: 10.1007/s11783-012-0410-2
  60. Fu, D., Farag, S., Chaouki, J., Jessop, P.G. (2014). Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technology, 154, 101-108. doi: 10.1016/j.biortech.2013.11.091
  61. Nowakowski, D.J., Bridgwater, A.V., Elliott, D.C., Meier, D., de Wild, P. (2010). Lignin fast pyrolysis: Results from an international collaboration. Journal of Analytical and Applied Pyrolysis, 88, 53-72. doi: 10.1016/j.jaap.2010.02.009
  62. Garcìa-Pérez, M., Chaala, A., Pakdel, H., Kretschmer, D., Roy, C. (2007). Vacuum pyrolysis of softwood and hardwood biomass: Comparison between product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis, 78, 104-116. doi: 10.1016/j.jaap.2006.05.003
  63. Farag, S., Fu, D., Jessop, P.G., Chaouki, J. (2014). Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. Journal of Analytical and Applied Pyrolysis, 109, 249-257. doi: 10.1016/j.jaap.2014.06.005
  64. Choi, Y.S., Johnston, P.A., Brown, R.C., Shanks, B.H., Lee, K.-H. (2014). Detailed characterization of red oak-derived pyrolysis oil: Integrated use of GC, HPLC, IC, GPC and Karl-Fischer. Journal of Analytical and Applied Pyrolysis, 110, 147-154. doi: 10.1016/j.jaap.2014.08.016
  65. Matos, M., Mattos, B.D., de Cademartori, P.H., Lourençon, T.V., Hansel, F.A., Zanoni, P.R., Yamamoto, C.I., Magalhães, W.L. (2020). Pilot-Scaled Fast-Pyrolysis Conversion of Eucalyptus Wood Fines into Products: Discussion Toward Possible Applications in Biofuels, Materials, and Precursors. BioEnergy Research, 13, 411-422, doi: 10.1007/s12155-020-10094-y
  66. Tanoh, T.S., Ait Oumeziane, A., Lemonon, J., Escudero Sanz, F.J., Salvador, S. (2020). Green waste/ wood pellets pyrolysis in a pilot-scale rotary kiln: effect of temperature on product distribution and characteristics. Energy & Fuels, 34, 3336-3345. doi: 10.1021/acs.energyfuels.9b04365
  67. Wang, Z., He, T., Qin, J., Wu, J., Li, J., Zi, Z., Liu, G., Wu, J., Sun, L. (2015). Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier. Fuel, 150, 386-393. doi: 10.1016/j.fuel.2015.02.056
  68. Zhang, Q., Chang, J., Wang, T., Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48, 87-92. doi: 10.1016/j.enconman.2006.05.010
  69. Diebold, J.P. (1999). A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils; National Renewable Energy Lab., Golden, CO (US).
  70. Collard, F.-X., Blin, J. (2014). A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, 594-608. doi: 10.1016/j.rser.2014.06.013
  71. Duman, G., Okutucu, C., Ucar, S., Stahl, R., Yanik, J. (2011). The slow and fast pyrolysis of cherry seed. Bioresource Technology, 102, 1869-1878. doi: 10.1016/j.biortech.2010.07.051
  72. Vitasari, C.R., Meindersma, G.W., de Haan, A.B. (2011). Water extraction of pyrolysis oil: The first step for the recovery of renewable chemicals. Bioresource Technology, 102, 7204-7210. doi: 10.1016/j.biortech.2011.04.079
  73. Heeres, A., Schenk, N., Muizebelt, I., Blees, R., de Waele, B., Zeeuw, A.J., Meyer, N., Carr, R., Wilbers, E., Heeres, H.J. (2018). Synthesis of bio-aromatics from black liquors using catalytic pyrolysis. ACS Sustainable Chemistry & Engineering, 6(3), 3472-3480. doi: 10.1021/acssuschemeng.7b03728
  74. Gómez, N., Banks, S.W., Nowakowski, D.J., Rosas, J.G., Cara, J., Sánchez, M.E., Bridgwater, A.V. (2018). Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Processing Technology, 172, 97-105. doi: 10.1016/j.fuproc.2017.11.021
  75. Cen, K., Zhang, J., Ma, Z., Chen, D., Zhou, J., Ma, H. (2019). Investigation of the relevance between biomass pyrolysis polygeneration and washing pretreatment under different severities: Water, dilute acid solution and aqueous phase bio-oil. Bioresource Technology, 278, 26-33. doi: 10.1016/j.biortech.2019.01.048
  76. Chen, W., Chen, Y., Yang, H., Li, K., Chen, X., Chen, H. (2018). Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature. Bioresource Technology, 249, 247-253. doi: 10.1016/j.biortech.2017.10.022
  77. Mäki-Arvela, P., Murzin, D. (2017). Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications. Catalysts, 7(9), 265, doi: 10.3390/catal7090265
  78. Shimanskaya, E., Stepacheva, А.A., Sulman, E., Rebrov, E., Matveeva, V. (2018). Lignin-containing feedstock hydrogenolysis for biofuel component production. Bulletin of Chemical Reaction Engineering & Catalysis, 13, 74-81.
  79. Demirbaş, A. (2002). Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Conversion and Management, 43, 897-909. doi: 10.1016/S0196-8904(01)00080-2
  80. Reddy, S.N., Nanda, S., Dalai, A.K., Kozinski, J.A. (2014). Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 39, 6912-6926. doi: 10.1016/j.ijhydene.2014.02.125
  81. Islam, M.W. (2020). A review of dolomite catalyst for biomass gasification tar removal. Fuel, 267, 117095. doi: 10.1016/j.fuel.2020.117095
  82. Macrì, D., Catizzone, E., Molino, A., Migliori, M. (2020). Supercritical water gasification of biomass and agro-food residues: Energy assessment from modelling approach. Renewable Energy, 150, 624-636. doi: 10.1016/j.renene.2019.12.147
  83. Cao, C., Bian, C., Wang, G., Bai, B., Xie, Y., Jin, H. (2020). Co-gasification of plastic wastes and soda lignin in supercritical water. Chemical Engineering Journal, 388, 124277. doi: 10.1016/j.cej.2020.124277
  84. Kirk, R., Othmer, D. (1992). Encyclopedia of Chemical Technology John Wiley & Sons: Vol. 4.
  85. Singh, S. (2019). Biodegradation of waste streams containing benzene, toluene, ethylbenzene and xylene (BTEX): Practical implications and brief perspectives. Annals of Advances in Chemistry, 3, 007-010. doi: 10.29328/journal.aac.1001018
  86. Meyers, R.A. (2004). Handbook of Petroleum Refining Processes 3rd ed.; McGraw-Hill Education: New York.
  87. Niziolek, A.M., Onel, O., Floudas, C.A. (2016). Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization. AIChE Journal, 62, 1531-1556, doi: 10.1002/aic.15144
  88. Kostyniuk, A., Grilc, M., Likozar, B. (2019). Catalytic Cracking of Biomass-Derived Hydrocarbon Tars or Model Compounds To Form Biobased Benzene, Toluene, and Xylene Isomer Mixtures. Industrial & Engineering Chemistry Research, 58, 7690-7705. doi: 10.1021/acs.iecr.9b01219
  89. Thring, R.W., Katikaneni, S.P.R., Bakhshi, N.N. (2000). The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Processing Technology, 62, 17-30, doi: 10.1016/S0378-3820(99)00061-2
  90. Ma, Z., Troussard, E., van Bokhoven, J.A. (2012). Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Applied Catalysis A: General, 423-424, 130-136. doi: 10.1016/j.apcata.2012.02.027
  91. Jackson, M.A., Compton, D.L., Boateng, A.A. (2009). Screening heterogeneous catalysts for the pyrolysis of lignin. Journal of Analytical and Applied Pyrolysis, 85, 226-230. doi: 10.1016/j.jaap.2008.09.016
  92. Elfadly, A.M., Zeid, I.F., Yehia, F.Z., Rabie, A.M., aboualala, M.M., Park, S.-E. (2016). Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica. International Journal of Biological Macromolecules, 91, 278-293. doi: 10.1016/j.ijbiomac.2016.05.053
  93. Zhang, J., Zheng, N., Wang, J. (2018). Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis. Bioresource Technology, 268, 445-453. doi: 10.1016/j.biortech.2018.08.018
  94. Bi, P., Yuan, Y., Fan, M., Jiang, P., Zhai, Q., Li, Q. (2013). Production of aromatics through current-enhanced catalytic conversion of bio-oil tar. Bioresource Technology, 136, 222-229. doi: 10.1016/j.biortech.2013.02.100
  95. Che, Q., Yang, M., Wang, X., Yang, Q., Rose Williams, L., Yang, H., Zou, J., Zeng, K., Zhu, Y., Chen, Y., Chen, H. (2019). Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. Bioresource Technology, 278, 248-254. doi: 10.1016/j.biortech.2019.01.081
  96. Heeres, A., Schenk, N., Muizebelt, I., Blees, R., De Waele, B., Zeeuw, A.-J., Meyer, N., Carr, R., Wilbers, E., Heeres, H.J. (2018). Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis. ACS Sustainable Chemistry & Engineering, 6, 3472-3480. doi: 10.1021/acssuschemeng.7b03728
  97. Fan, M.-H., Deng, S.-M., Wang, T.-J., Li, Q.-X. (2014). Production of BTX through catalytic depolymerization of lignin. Chinese Journal of Chemical Physics, 27, 221-226.
  98. Ma, Z., Custodis, V., van Bokhoven, J.A. (2014). Selective deoxygenation of lignin during catalytic fast pyrolysis. Catalysis Science & Technology, 4, 766-772.
  99. Deepa, A.K., Dhepe, P.L. (2015). Lignin Depolymerization into Aromatic Monomers over Solid Acid Catalysts. ACS Catalysis, 5, 365-379. doi: 10.1021/cs501371q
  100. Kellett, P.J., Collias, D.I. (2016). Catalysts and processes for the production of aromatic compounds from lignin. US Patent 9452422 B2.
  101. Fakirov, S. (2002). Handbook of thermoplastic polyesters; Wiley-Vch: Vol. 2.
  102. Scheirs, J., Long, T.E. (2005). Modern polyesters: chemistry and technology of polyesters and copolyesters; John Wiley & Sons.
  103. Fadzil, N.A.M., Rahim, M.H.A., Maniam, G.P. (2014). A brief review of para-xylene oxidation to terephthalic acid as a model of primary C–H bond activation. Chinese Journal of Catalysis, 35, 1641-1652. doi: 10.1016/S1872-2067(14)60193-5
  104. Wendisch, V.F., Kim, Y., Lee, J.-H. (2018). Chemicals from lignin: Recent depolymerization techniques and upgrading extended pathways. Current Opinion in Green and Sustainable Chemistry, 14, 33-39. doi: 10.1016/j.cogsc.2018.05.006
  105. Settle, A.E., Berstis, L., Rorrer, N.A., Roman-Leshkóv, Y., Beckham, G.T., Richards, R.M., Vardon, D.R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19, 3468-3492. doi: 10.1039/c7gc00992e
  106. Bai, Z., Phuan, W.C., Ding, J., Heng, T.H., Luo, J., Zhu, Y. (2016). Production of Terephthalic Acid from Lignin-Based Phenolic Acids by a Cascade Fixed-Bed Process. ACS Catalysis, 6, 6141-6145. doi: 10.1021/acscatal.6b02052
  107. Song, S., Zhang, J., Gözaydın, G., Yan, N. (2019). Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie, 131, 4988-4991. doi: 10.1002/ange.201814284
  108. Yildiz, G., Ronsse, F., Duren, R.v., Prins, W. (2016). Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass. Renewable and Sustainable Energy Reviews, 57, 1596-1610. doi: 10.1016/j.rser.2015.12.202
  109. Parihar, A., Bhattacharya, S. (2019). Cellulose fast pyrolysis for platform chemicals: assessment of potential targets and suitable reactor technology. Biofuels, Bioproducts and Biorefining, 14(2), 446-468. doi: 10.1002/bbb.2066
  110. Kovac, R., O’Neil, D. (1989). The Georgia Tech entrained flow pyrolysis process. In Pyrolysis and gasification, Ferrero, G.L., Maniatis, K., Buekens, A., Bridgwater, A.V., Eds. Elsevier Applied Science: pp. 169-179.
  111. Maniatis, K., Baeyens, J., Peeters, H., Roggeman, G. (1993). The Egemin flash pyrolysis process: commissioning and initial results. In Advances in thermochemical biomass conversion, Bridgwater, A.V., Boocock, D.G.G., Eds. Springer: pp. 1257-1264.
  112. Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 51, 3-22. doi: 10.1016/S0165-2370(99)00005-4
  113. Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68-94. doi: 10.1016/j.biombioe.2011.01.048
  114. Yunpu, W., Leilei, D.A.I., Liangliang, F.A.N., Shaoqi, S., Yuhuan, L.I.U., Roger, R. (2016). Review of microwave-assisted lignin conversion for renewable fuels and chemicals. Journal of Analytical and Applied Pyrolysis, 119, 104-113. doi: 10.1016/j.jaap.2016.03.011
  115. Kouris, P.D., Huang, X., Boot, M.D., Hensen, E.J.M. (2018). Scaling-Up Catalytic Depolymerisation of Lignin: Performance Criteria for Industrial Operation. Topics in Catalysis, 61, 1901-1911. doi: 10.1007/s11244-018-1048-5

No citation recorded.