Totally-green Fuels via CO2 Hydrogenation

*Lorenzo Spadaro orcid scopus  -  Dipartimento di Ingegneria, Università degli Studi di Messina, Italy
Alessandra Palella orcid  -  Istituto CNR di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Italy
Francesco Arena  -  Dipartimento di Ingegneria, Università degli Studi di Messina, Italy
Received: 1 Feb 2020; Revised: 21 Apr 2020; Accepted: 23 Apr 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Hydrogen is the cleanest energy vector among any fuels, nevertheless, many aspects related to its distribution and storage still raise serious questions concerning costs, infrastructure and safety. On this account, the chemical storage of renewable-hydrogen by conversion into green-fuels, such as: methanol, via CO2 hydrogenation assumes a role of primary importance, also in the light of a cost-to-benefit analysis. Therefore, this paper investigates the effects of chemical composition on the structural properties, surface reactivity and catalytic pathway of ternary CuO-ZnO-CeO2 systems, shedding light on the structure-activity relationships. Thus, a series of CuZnCeO2 catalysts, at different CuO/CeO2 ratio (i.e. 0.2-1.2) were performed in the CO2 hydrogenation reactions at 20 bar and 200-300 °C, (GHSV of 4800 STP L∙kg∙cat-1∙h-1). Catalysts were characterized by several techniques including X-ray Diffraction (XRD), N2-physisorption, single-pulse N2O titrations, X-ray Photoelectron Spectroscopy (XPS), and Temperature-programmed Reduction with H2 (H2-TPR). Depending on preparation method, the results clearly diagnostics the occurrence of synergistic structural-electronic effects of cerium oxide on copper activity, with an optimal 0.5 copper-to-cerium content. The rise of CuO loading up to 30% drives to a considerable increase of hydrogenation activity: C2Z1-C catalyst obtains the best catalytic performance, reaching methanol yield value of 12% at 300 °C. Catalyst activity proceeds according to volcano-shaped relationships, in agreement with a dual sites mechanism. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: Renewable energy; hydrogen-to-liquid-fuels (HTL); carbon dioxide recycling; methanol synthesis and synfuels

Article Metrics:

  1. IEA. (2018). 2018 World Energy Outlook: Executive Summary. Oecd/Iea, 11.
  2. Spadaro, L., Arena, F., Palella, A. (2017). Which Future Route in the Methanol Synthesis? Photocatalytic Reduction of CO2, the New Challenge in the Solar Energy Exploitation, in Methanol: Science and Engineering (eds. Basile, A., and Dalena, F.), Elsevier, pp. 429–472.
  3. Arena, F., Mezzatesta, G., Spadaro, L., Trunfio, G. (2014). Latest Advances in the Catalytic Hydrogenation of Carbon Dioxide to Methanol/Dimethylether, in Transformation and Utilization of Carbon Dioxide, Green Chemistry and Sustainable Technology (eds.Bhanage, B.M., and Arai, M.), Berlin Heidelberg, pp. 103–130.
  4. Horizon Europe Program https://www.fch.europa.eu.
  5. Agirre, I., Gandarias, I., Arias, P.L. (2019). Process design and techno-economic analysis of gas and aqueous phase maleic anhydride production from biomass-derived furfural. Biomass Convers. Biorefinery, 22. doi: 10.1007/s13399-019-00462-w
  6. Spadaro, L., Palella, A., Frusteri, F., Arena, F. (2015). Valorization of crude bio-oil to sustainable energy vector for applications in cars powering and on-board reformers via catalytic hydrogenation. Int. J. Hydrogen Energy, 40(42), 14507–14518.
  7. Schemme, S., Breuer, J.L., Köller, M., Meschede, S., Walman, F., Samsun, R.C., Peters, R., Stolten, D. (2019). H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. Int. J. Hydrogen Energy, 45(8), 5395-5414.
  8. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W. (2016). Direct Capture of CO2 from Ambient Air. Chem. Rev., 116(19), 11840–11876.
  9. Azarabadi, H., Lackner, K.S. (2019). A sorbent-focused techno-economic analysis of direct air capture. Appl. Energy, 250, 959–975.
  10. Ma, Z., Porosoff, M.D. (2019). Development of Tandem Catalysts for CO2 Hydrogenation to Olefins. ACS Catal., 9(3), 2639–2656.
  11. Allam, D., Cheknoun, S., Hocine, S. (2019). Operating Conditions and Composition Effect on the Hydrogenation of Carbon Dioxide Performed over CuO/ZnO/Al2O3 Catalysts. Bull. Chem. React. Eng. Catal., 14(3), 604-613. doi: 10.9767/bcrec.14.3.3451.604-613
  12. Olah, G.A., Goeppert, A., Prakash, G.K.S. (2009). Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. J. Org. Chem., 74(2), 487–498.
  13. Goeppert, A., Czaun, M., Jones, J.P., Surya Prakash, G.K., Olah, G.A. (2014). Recycling of carbon dioxide to methanol and derived products-closing the loop. Chem. Soc. Rev., 43(23), 7995–8048.
  14. Arena, F., Mezzatesta, G., Zafarana, G., Trunfio, G., Frusteri, F., Spadaro, L. (2013). Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation. J. Catal., 300, 141–151.
  15. Arena, F., Mezzatesta, G., Zafarana, G., Trunfio, G., Frusteri, F., Spadaro, L. (2013). How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol. Catal. Today, 210, 39–46.
  16. Spadaro, L., Arena, F., Negro, P., Palella, A. (2018). Sunfuels from CO2 exhaust emissions: Insights into the role of photoreactor configuration by the study in laboratory and industrial environment. J. CO2 Util., 26, 445–453.
  17. Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., Frusteri, F. (2007). Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal., 249(2), 185–194.
  18. Spadaro, L., Santoro, M., Palella, A., Arena, F. (2017). Hydrogen Utilization in Green Fuel Synthesis via CO2 Conversion to Methanol over New Cu-Based Catalysts. ChemEngineering, 1(2), 19-30.
  19. Sebastián, D., Palella, A., Baglio, V., Spadaro, L., Siracusano, S., Negro, P., Niccoli, F., Aricò, A.S. (2017). CO2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials. Electrochim. Acta, 241, 28–40.
  20. Arena, F., Italiano, G., Barbera, K., Bordiga, S., Bonura, G., Spadaro, L., Frusteri, F. (2008). Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl. Catal. A Gen., 350(1), 16–23.
  21. Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A. V., Wezendonk, T.A., Makkee, M., Gascon, J., Kapteijn, F. (2017). Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev., 117(14), 9804–9838.
  22. Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., Abou-Hamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K., Van Speybroeck, V., Gascon, J. (2019). Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catal., 9(7), 6320–6334.
  23. Li, S., Guo, L., Ishihara, T. (2020). Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catal. Today, 339, 352–361.
  24. Baldiraghi, F., Stanislao, M. Di, Faraci, G., Perego, C., Marker, T., Gosling, C., Kokayeff, P., Kalnes, T., Marinangeli, R. (2009). Ecofining: New Process for Green Diesel Production from Vegetable Oil, in Sustainable Industrial Processes (eds. Cavani, F., Centi, G., Perathoner, S., and Trifirò, F.), Wiley-VCH Varlag Gmbh & Co. KGaA, pp. 427–438.
  25. Wang, G., Mao, D., Guo, X., Yu, J. (2019). Methanol synthesis from CO2 hydrogenation over CuO-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W). Int. J. Hydrogen Energy, 44(8), 4197–4207.
  26. Xiao, J., Mao, D., Wang, G., Guo, X., Yu, J. (2019). CO2 hydrogenation to methanol over CuO-ZnO-TiO2-ZrO2 catalyst prepared by a facile solid-state route: The significant influence of assistant complexing agents. Int. J. Hydrogen Energy, 44(29), 14831–14841.
  27. Li, F., Zhan, H., Zhao, N., Xiao, F. (2017). CO2 hydrogenation to methanol over La-Mn-Cu-Zn-O based catalysts derived from perovskite precursors. Int. J. Hydrogen Energy, 42(32), 20649–20657.
  28. Tan, Q., Shi, Z., Wu, D. (2018). CO2 Hydrogenation to Methanol over a Highly Active Cu-Ni/CeO2-Nanotube Catalyst. Ind. Eng. Chem. Res., 57, 10148–10158.
  29. Chang, K., Wang, T., Chen, J.G. (2019). Methanol Synthesis from CO2 Hydrogenation over CuZnCeTi Mixed Oxide Catalysts. Ind. Eng. Chem. Res., 58(19), 7922–7928.
  30. Tada, S., Kayamori, S., Honma, T., Kamei, H., Nariyuki, A., Kon, K., Toyao, T., Shimizu, K.I., Satokawa, S. (2018). Design of Interfacial Sites between Cu and Amorphous ZrO2 Dedicated to CO2-to-Methanol Hydrogenation. ACS Catal., 8(9), 7809–7819.
  31. Si, C., Ban, H., Chen, K., Wang, X., Cao, R., Yi, Q., Qin, Z., Shi, L., Li, Z., Cai, W., Li, C. (2020). Insight into the positive effect of Cu0/Cu+ ratio on the stability of Cu-ZnO-CeO2 catalyst for syngas hydrogenation. Appl. Catal. A Gen., 594, 117466-117475.
  32. Sripada, P., Kimpton, J., Barlow, A., Williams, T., Kandasamy, S., Bhattacharya, S. (2020). Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J. Catal., 381, 415–426.
  33. Arena, F., Italiano, G., Barbera, K., Bonura, G., Spadaro, L., Frusteri, F. (2009). Basic evidences for methanol-synthesis catalyst design. Catal. Today, 143(1–2), 80–85.
  34. Arena, F., Spadaro, L., Di Blasi, O., Bonura, G., Frusteri, F. (2004). Integrated synthesis of dimethylether via CO2 hydrogenation, Studies in Surface Science and Catalysis, 147, 385–390.
  35. Wang, W., Qu, Z., Song, L., Fu, Q. (2020). CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction. J. Energy Chem., 40, 22–30.
  36. Shi, Z., Tan, Q., Wu, D. (2019). Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst. Appl. Catal. A Gen., 581, 58–66.
  37. Evans, J.W., Wainwright, M.S., Bridgewater, A.J., Young, D.J. (1983). On the determination of copper surface area by reaction with nitrous oxide. Appl. Catal., 7(1), 75–83.
  38. Spadaro, L., Arena, F., Granados, M.L., Ojeda, M., Fierro, J., Frusteri, F. (2005). Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction. J. Catal., 234(2), 451–462.
  39. Arena, F., Famulari, P., Interdonato, N., Bonura, G., Frusteri, F., Spadaro, L. (2006). Physico-chemical properties and reactivity of Au/CeO2 catalysts in total and selective oxidation of CO. Catal. Today, 116(3), 384–390.
  40. Arena, F., Trunfio, G., Fazio, B., Negro, J., Spadaro, L. (2009). Nanosize effects, physicochemical properties, and catalytic oxidation pattern of the redox-precipitated MnCeOx system. J. Phys. Chem. C, 113(7), 2822–2829.
  41. Fazio, B., Spadaro, L., Trunfio, G., Negro, J., Arena, F. (2011). Raman scattering of MnOx-CeOx composite catalysts: Structural aspects and laser-heating effects. J. Raman Spectrosc., 42(7), 1583–1588.
  42. Barbera, K., Frusteri, L., Italiano, G., Spadaro, L., Frusteri, F., Perathoner, S., Centi, G. (2014). Low-temperature graphitization of amorphous carbon nanospheres. Cuihua Xuebao/Chinese J. Catal., 35(6), 869–876.
  43. Zhang, L., Pan, L., Ni, C., Sun, T., Zhao, S., Wang, S., Wang, A., Hu, Y. (2013). CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming. Int. J. Hydrogen Energy, 38(11), 4397–4406.
  44. Zhang, L., Lei, J.-T., Tian, Y., Hu, X., Bai, J., Pan, L.-W., Liu, D., Yang, Y. (2015). Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming. Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol., 43(11), 1366–1374.
  45. Allam, D., Bennici, S., Limousy, L., Hocine, S. (2019). Improved Cu- and Zn-based catalysts for CO2 hydrogenation to methanol. Comptes Rendus Chim., 22(2–3), 227–237.
  46. Dong, X., Li, F., Zhao, N., Tan, Y., Wang, J., Xiao, F. (2017). CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Cuihua Xuebao/Chinese J. Catal., 38(4), 717–725.
  47. Liu, J., Han, C., Yang, X., Gao, G., Shi, Q., Tong, M., Liang, X., Li, C. (2016). Methyl formate synthesis from methanol on titania supported copper catalyst under UV irradiation at ambient condition: Performance and mechanism. J. Catal., 333, 162–170.
  48. Zhang, K., Peng, X., Cao, Y., Yang, H., Wang, X., Zhang, Y., Zheng, Y., Xiao, Y., Jiang, L. (2019). Effect of MnO2 morphology on its catalytic performance in lean methane combustion. Mater. Res. Bull., 111, 338–341.
  49. Li, J., Li, M., Gui, P., Zheng, L., Liang, J., Xue, G. (2019). Hydrothermal synthesis of sandwich interspersed LaCO3OH/Co3O4/graphene oxide composite and the enhanced catalytic performance for methane combustion. Catal. Today, 327, 134–142.
  50. Yu, Q., Wang, C., Li, X., Li, Z., Wang, L., Zhang, Q., Wu, G., Li, Z. (2019). Engineering an effective MnO2 catalyst from LaMnO3 for catalytic methane combustion. Fuel, 239, 1240–1245.
  51. Yang, N., Ni, S., Sun, Y., Zhu, Y. (2018). A facial strategy to synthesize Pd/Co3O4 nanosheets with enhanced performance for methane catalytic oxidation. Mol. Catal., 452, 28–35.
  52. Zhang, Y., Qin, Z., Wang, G., Zhu, H., Dong, M., Li, S., Wu, Z., Li, Z., Wu, Z., Zhang, J., Hu, T., Fan, W., Wang, J. (2013). Catalytic performance of MnOx -NiO composite oxide in lean methane combustion at low temperature. Appl. Catal. B Environ., 129, 172–181.
  53. Palella, A., Spadaro, L., Di Chio, R., Arena, F. Effective low-temperature catalytic methane oxidation over Mn-CeO2 catalytic compositions Alessandra. Catal. Today. voll
  54. Wang, X., Liu, Y., Zhang, Y., Zhang, T., Chang, H., Zhang, Y., and Jiang, L. (2018) Structural requirements of manganese oxides for methane oxidation: XAS spectroscopy and transition-state studies. Appl. Catal. B Environ., 229, 52–62.
  55. Arena, F., Di Chio, R., Filiciotto, L., Trunfio, G., Espro, C., Palella, A., Patti, A., Spadaro, L. (2017). Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation. Part II. Reaction mechanism and kinetic modelling. Appl. Catal. B Environ., 218, 803–809.
  56. Arena, F., Di Chio, R., Fazio, B., Espro, C., Spiccia, L., Palella, A., Spadaro, L. (2017). Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation. Part I. Influence of cerium addition on structure and CO oxidation activity. Appl. Catal. B Environ., 210, 14–22.
  57. Larachi, F., Pierre, J., Adnot, A., Bernis, A. (2002). Ce3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl. Surf. Sci., 195, 236–250.
  58. Chang, K., Wang, T., Chen, J.G. (2017). Hydrogenation of CO2 to methanol over CuCeTiO catalysts. Appl. Catal. B Environ., 206, 704–711.
  59. Angelo, L., Kobl, K., Tejada, L.M.M., Zimmermann, Y., Parkhomenko, K., Roger, A.-C. (2015) Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol. Comptes Rendus Chim., 18(3), 250–260.
  60. Rhodes, M.D., Bell, A.T. (2005) The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part I. Steady-state studies. J. Catal., 233, 198–209.
  61. Rhodes, M.D., Pokrovski, K.A., Bell, A.T. (2005) The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts: Part II. Transient-response infrared studies. J. Catal., 233 (1), 210–220.
  62. Sio, C., Sio, C.Z., Fisher, I.A., Bell, A.T. (1997). In-Situ Infrared Study of Methanol Synthesis from H2/CO2. J. Catal., 172, 222–237.
  63. Fisher, I.A., Bell, A.T. (1998). In Situ Infrared Study of Methanol Synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. J. Catal., 178, 153–173.
  64. Grabow, L.C., Mavrikakis, M. (2011) Mechanism of methanol synthesis on cu through CO2 and CO hydrogenation. ACS Catal., 1(4), 365–384.
  65. Rasmussen, P.B., Holmblad, P.M., Askgaard, T., Ovesen, C. V., Stoltze, P., Nørskov, J.K., Chorkendorff, I. (1994). Methanol synthesis on Cu(100) from a binary gas mixture of CO2 and H2. Catal. Letters, 26(3–4), 373–381.
  66. Fisher, I.A., Woo, H.C., Bell, A.T. (1997). Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2. Catal. Letters, 44(1–2), 11–17.

No citation recorded.