Selective Production of Green Hydrocarbons from the Hydrotreatment of Waste Coconut Oil over Ni- and NiMo-supported on Amine-functionalized Mesoporous Silica

Wega Trisunaryanti  -  Department of Chemistry, Universitas Gadjah Mada, Indonesia
*Savitri Larasati  -  Department of Chemistry, Universitas Gadjah Mada, Indonesia
Triyono Triyono  -  Department of Chemistry, Universitas Gadjah Mada, Indonesia
Cahyarani Paramesti  -  Department of Chemistry, Universitas Gadjah Mada, Indonesia
Nugroho Raka Santoso  -  Department of Chemistry, Universitas Gadjah Mada, Indonesia
Received: 26 Jan 2020; Revised: 13 May 2020; Accepted: 13 May 2020; Published: 1 Aug 2020; Available online: 30 Jul 2020.
Open Access Copyright (c) 2020 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

In order to overcome the depletion of energy resources, the production of fuel from a renewable source (green fuel) has aroused attention. The present work serves as a comparative study for green fuel production by utilizing monometallic Ni and bimetallic NiMo loaded on amine-functionalized mesoporous silica (MS). Two types of catalysts, denoted as Ni/NH2-MS and NiMo/NH2-MS, were prepared and evaluated for its catalytic activity in the hydrotreatment of waste coconut oil (WCO) at 450 ℃ under the flow of H2 gas (20 mL.min-1). Each catalysts were characterized by using X-ray Diffraction (XRD), Atomic Absorption Spectrometer (AAS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Fourier Transform Infra Red (FTIR). Study of selectivity by GC-MS showed that gasoline-range hydrocarbon, especially n-undecane, was the major compound in the liquid products generated by the two amine-functionalized catalysts prepared in this study. The result showed that monometallic Ni/NH2-MS with surface area, total pore volume, nickel loading and average pore diameter 328.68 m2.g-1, 0.25 cm3.g-1, 1.90 wt%, 3.10 nm, respectively, exhibited the best performance in producing liquid hydrocarbon and generated higher level of liquid product (77.9 wt%) than bimetallic NiMo/NH2-MS (76.3 wt%). However, it is highlighted that adding 1.08 wt% of Mo in bimetallic NiMo/NH2-MS comprising 0.83 wt% of Ni improved the catalyst selectivity towards producing higher level of gasoline-range hydrocarbon (43 wt%). The bimetallic NiMo/NH2-MS prepared was found to have surface area, total pore volume, and average pore diameter of 325.13 m2.g-1, 0.14 cm3.g-1, 3.22 nm, respectively. Copyright © 2020 BCREC Group. All rights reserved

 

Keywords: hydrotreatment; biofuel production; amine-functionalized; bimetallic catalyst; mesoporous silica

Article Metrics:

  1. Huang, D., Zhou, H., Lin, L. (2012). Biodiesel : an Alternative to Conventional Fuel. Energy Procedia, 16, 1874–1885. DOI: 10.1016/j.egypro.2012.01.287
  2. Vásquez, M.C., Silva, E.E., Castillo, E.F. (2017). Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production. Biomass and Bioenergy, 105, 197–206. DOI: 10.1016/j.biombioe.2017.07.008
  3. Aatola, H., Larmi, M., Sarjovaara, T., Mikkonen, S. (2009). Hydrotreated vegetable Oil (HVO) as a renewable diesel fuel: Trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int. J. Engines, 1, 1251–1262. DOI: 10.4271/2008-01-2500
  4. Hellier, P., Talibi, M., Eveleigh, A., Ladommatos, N. (2018). An overview of the effects of fuel molecular structure on the combustion and emissions characteristics of compression ignition engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng., 232, 90–105. DOI: 10.1177/0954407016687453
  5. Yang, Y., Wang, Q., Zhang, X., Wang, L., Li, G. (2013). Hydrotreating of C 18 fatty acids to hydrocarbons on. Fuel Process. Technol., 116, 165–174. DOI: 10.1016/j.fuproc.2013.05.008
  6. Kandel, K., Frederickson, C., Smith, E.A., Lee, Y.J., Slowing, I.I. (2013). Bifunctional adsorbent-catalytic nanoparticles for the refining of renewable feedstocks. ACS Catal., 3, 2750–2758. DOI: 10.1021/cs4008039
  7. Pham., L.J. (2016). Industrial Oil Crops. Illinois: Elsevier Inc.
  8. Shankar, P., Ahuja, S., Tracchio, A. (2014). Coconut oil : a review, Agro FOOD Ind. Hi Tech. 24. 62–64.
  9. Eyres, L., Eyres, M.F., Chisholm, A., Brown, R.C. (2016). Coconut oil consumption and cardiovascular risk factors in humans. Nutr. Rev., 74, 267–280. DOI: 10.1093/nutrit/nuw002
  10. Herlina, H., Astriyaningsih, E., Windarti, W. S., Nurhayati, N. (2017). Degree of Coconut Oil Rancidity During Recycled Vacuum Frying for Production of Ripe Banana Chips (RBC). J. Agroteknologi, 11, 186–193. DOI: 10.19184/j-agt.v11i02.6527
  11. Kulkarni, M.G., Dalai, A.K. (2006). Waste cooking oil - An economical source for biodiesel: A review. Ind. Eng. Chem. Res., 45, 2901–2913. DOI: 10.1021/ie0510526
  12. Kon, K., Onodera, W., Takakusagi, S., Shimizu, K.I. (2014). Hydrodeoxygenation of fatty acids and triglycerides by Pt-loaded Nb2O5 catalysts. Catal. Sci. Technol., 4, 3705–3712. DOI: 10.1039/c4cy00757c
  13. Murata, K., Liu, Y., Inaba, M., Takahara, I. (2010). Production of synthetic diesel by hydrotreatment of jatropha oils using Pt-Re/H-ZSM-5 catalyst. Energy and Fuels, 24, 2404–2409. DOI: 10.1021/ef901607t
  14. Wang, H., Yan, S., Salley, S.O., Ng, K.Y.S. (2012). Hydrocarbon Fuels Production from Hydrocracking of Soybean Oil Using Transition Metal Carbides and Nitrides Supported on ZSM-5. Ind. Eng. Chem. Res., 51, 10066–10073. DOI: 10.1021/ie3000776
  15. Liu, Y., Sotelo-Boyás, R., Murata, K., Minowa, T., Sakanishi, K. (2011). Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni-Mo and solid acids. Energy and Fuels, 25, 4675–4685. DOI: 10.1021/ef200889e
  16. Zhou, L., Lawal, A. (2015). Evaluation of presulfided NiMo/γ-Al2O3 for hydrodeoxygenation of microalgae oil to produce green diesel. Energy and Fuels, 29, 262–272. DOI: 10.1021/ef502258q
  17. Trisunaryanti, W., Suarsih, E., Triyono, T., Falah, I.I. (2019). Well-dispersed nickel nanoparticles on the external and internal surfaces of SBA-15 for hydrocracking of pyrolyzed α-cellulose. RSC Adv., 9, 1230–1237. DOI: 10.1039/c8ra09034c
  18. Fang, Z., Shi, D., Lin, N., Li, A., Wu, Q., Wang, Q., Zhao, Y., Feng, C., Jiao, Q., Li, H. (2019). Probing the synergistic effect of Mo on Ni-based catalyst in the hydrogenation of dicyclopentadiene. Appl. Catal. A Gen., 574, 60–70. DOI: 10.1016/j.apcata.2019.01.026
  19. Kaluža, L., Karban, J., Gulková, D. (2019). Activity and selectivity of Co(Ni)Mo sulfides supported on MgO, Al2O3, ZrO2, TiO2, MCM-41 and activated carbon in parallel hydrodeoxygenation of octanoic acid and hydrodesulfurization of 1-benzothiophene. React. Kinet. Mech. Catal., 127, 887–902. DOI: 10.1007/s11144-019-01620-x
  20. Subsadsana, M., Khamor, P., Sangdara, P., Suwannasom, P., Ruangviriyachai, C. (2017). Synthesis and catalytic performance of bimetallic NiMo- and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels. J. Fuel Chem. Technol., 45, 805–816. DOI: 10.1016/s1872-5813(17)30039-7
  21. Chen, N., Gong, S., Qian, E.W. (2015). Effect of reduction temperature of NiMoO3-x/SAPO-11 on its catalytic activity in hydrodeoxygenation of methyl laurate. Appl. Catal. B Environ., 174–175, 253–263. DOI: 10.1016/j.apcatb.2015.03.011
  22. Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., Yakovlev, V.A. (2015). Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters. Appl. Catal. B Environ., 163, 531–538. DOI: 10.1016/j.apcatb.2014.08.001
  23. Pestman, R., Koster, R.M., Pieterse, J.A.Z., Ponec, V. (1997). Reactions of carboxylic acids on oxides: 1. Selective hydrogenation of acetic acid to acetaldehyde. J. Catal., 168, 255–264. DOI: 10.1006/jcat.1997.1623
  24. Marsuki, M.F., Trisunaryanti, W., Falah, I.I., Wijaya, K. (2018). Synthesis of Co, Mo, Co-Mo and Mo-Co catalysts, supported on mesoporous silica-alumina for hydrocracking of a-cellulose pyrolysis oil. Orient. J. Chem., 34, 955–962. DOI: 10.13005/ojc/340245
  25. Trisunaryanti, W., Falah, I.I., Marsuki, M.F. (2017). Synthesis of Mesoporous Silica-Alumina from Lapindo Mud Using Gelatin from Catfish Bone as a Template : Effect of Extracting Temperature on Yield and Characteristic of Gelatin as well as Mesoporous Silica-Alumina. In CEST 2017. CEST2017_00741. Rhodes, Greece: 15th International Conference on Environmental Science and Technology.
  26. Pandya, P.H., Jasra, R.V., Newalkar, B.L., Bhatt, P.N. (2005). Studies on the activity and stability of immobilized α-amylase in ordered mesoporous silicas. Microporous Mesoporous Mater., 77, 67–77. DOI: 10.1016/j.micromeso.2004.08.018
  27. Malaibari, Z.O., Croiset, E., Amin, A., Epling, W. (2015). Effect of interactions between Ni and Mo on catalytic properties of a bimetallic Ni-Mo/Al2O3 propane reforming catalyst. Appl. Catal. A Gen., 490, 80–92. DOI: 10.1016/j.apcata.2014.11.002
  28. Varkolu, M., Velpula, V., Ganji, S., Burri, D.R., Kamaraju, S.R.R. (2015). Ni nanoparticles supported on mesoporous silica (2D, 3D) architectures: highly efficient catalysts for the hydrocyclization of biomass-derived levulinic acid. RSC Adv., 5, 57201–57210. DOI: 10.1039/c5ra10857h
  29. Doronin, V.P., Potapenko, O.V., Lipin, P.V., Sorokina, T.P. (2013). Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 106, 757–765. DOI: 10.1016/j.fuel.2012.11.027
  30. Khalil, K.M.S. (2007). Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature. J. Colloid Interface Sci., 315, 562–568. DOI: 10.1016/j.jcis.2007.07.030
  31. Huang, L., Chen, X., Li, Q. (2001). Synthesis of microporous molecular sieves by surfactant decomposition. J. Mater. Chem., 11, 610–615. DOI: 10.1039/b005770n
  32. Alothman, Z.A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel)., 5, 2874–2902. DOI: 10.3390/ma5122874
  33. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem., 87, 1051–1069. DOI: 10.1515/pac-2014-1117
  34. Morsi, R.E., Morsi, R.E., Mohamed, R.S. (2018). Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. R. Soc. Open Sci., 5, 172021. DOI: 10.1098/rsos.172021
  35. Lloyd, G.E. (1987). Atomic number and crystallographic contrast images with the SEM : a review of backscattered electron techniques. Mineral. Mag., 51, 3–19.
  36. Lewis, P., Michklethwaite, S., Harrington, J., Dixon, M., Brydson, R., Hondow, N. (2015). Exploring backscattered imaging in low voltage. J. Phys. Conf. Ser., 644, 012019. DOI: 10.1088/1742-6596/644/1/012019
  37. Sinha, A.K., Anand, M., Rana, B.S., Kumar, R., Farooqui, S.A., Sibi, M.G., Kumar, R., Joshi, R.K. (2013). Development of Hydroprocessing Route to Transportation Fuels from Non-Edible Plant-Oils. Catal. Surv. from Asia, 17, 1–13. DOI: 10.1007/s10563-012-9148-x
  38. Rogers, K.A., Zheng, Y. (2016). Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments : A Review and New Insights. ChemSusChem, 9, 1750–1772. DOI: 10.1002/cssc.201600144
  39. Kandel, K., Anderegg, J.W., Nelson, N.C., Chaudhary, U., Slowing, I.I. (2014). Supported iron nanoparticles for the hydrodeoxygenation of microalgal oil to green diesel. J. Catal., 314, 142–148. DOI: 10.1016/j.jcat.2014.04.009
  40. Du, H., Li, M., Liu, D., Ren, Y. (2015), Slurry-phase hydrocracking of heavy oil and model reactant: effect of dispersed Mo catalyst. Appl. Petrochemical Res., 5, 89–98. DOI: 10.1007/s13203-014-0092-8
  41. Fang, K., Ren, J., Sun, Y. (2005). Effect of nickel precursors on the performance of Ni/AlMCM-41 catalysts for n-dodecane hydroconversion. J. Mol. Catal. A Chem., 229, 51–58. DOI: 10.1016/j.molcata.2004.10.055
  42. Lv, X., Chen, J., Tan, Y., Zhang, Y. (2012). Short Communication A highly dispersed nickel supported catalyst for dry reforming of methane. Catalysis Communication, 20, 6–11. DOI: 10.1016/j.catcom.2012.01.002
  43. Liu, C., Ye, J., Jiang, J., Pan, Y. (2011). Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane. ChemCatChem, 3, 529–541. DOI: 10.1002/cctc.201000358
  44. Borowiecki, T., Denis, A., Gac, W., Dziembaj, R., Piwowarska, Z., Drozdek, M. (2004). Oxidation-reduction of Ni/Al2O3 steam reforming catalysts promoted with Mo. Appl. Catal. A Gen., 274, 259–267. DOI: 10.1016/j.apcata.2004.07.009
  45. Kumar, P., Maity, S.K., Shee, D. (2019). Hydrodeoxygenation of stearic acid using Mo modified Ni and Co/alumina catalysts : Effect of calcination temperature. Chem. Eng. Commun., 1–16. DOI: 10.1080/00986445.2019.1630396
  46. Robinson, A.M., Hensley, J.E., Medlin, J.W. (2016). Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catal., 6, 5026–5043. DOI: 10.1021/acscatal.6b00923
  47. Li, Z., Jiang, Y., Yeagley, A.A., Bour, J.P., Liu, L., Chruma, J.J., Fu, Y. (2012). Mechanism of the Pd-catalyzed decarboxylative allylation of α-imino esters: Decarboxylation via free carboxylate ion. Chem. - A Eur. J., 18, 14527–14538. DOI: 10.1002/chem.201201425
  48. Kluger, R., Howe, G.W., Mundle, S.O.C. (2013). Avoiding CO2 in Catalysis of Decarboxylation. In Advances in Physical Organic Chemistry. Canada: Elsevier Ltd.
  49. Oomens, J., Steill, J.D. (2008). Free carboxylate stretching modes. J. Phys. Chem. A., 112, 3281–3283. DOI: 10.1021/jp801806e
  50. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bull. Chem. React. Eng. Catal., 6, 129–136. DOI: 10.9767/bcrec.6.2.1213.129-136

No citation recorded.