1Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 23600 Kuantan Pahang, Malaysia
2School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
BibTex Citation Data :
@article{BCREC7055, author = {Abdulkarim Abdulrahman Suliman and Ruzinah Isha and Mazrul Nizam Seman and Abdul Ahmad and Jamil Roslan}, title = {Mesoporous Ce-doped Ti:Ash Photocatalyst Investigation in Visible Light Photocatalytic Water Pretreatment Process}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {15}, number = {2}, year = {2020}, keywords = {Cerium; Humic acid; Palm oil fiber ash; Photocatalysis; Titanium dioxide; seawater pretreatment;}, abstract = { The treatment of organic pollutants in water including semiconductor photocatalysis is a promising approach to disinfect water. The objective of this study is to investigate the effect of Ce loaded on mesoporous Ti:Ash catalyst for water pretreatment process. The mesoporous Ti:Ash catalyst that doped with Ce was synthesized through wet impregnation method with 5%, 10%, and 15% weight percentage of Ce doped on 40:60 Ti:Ash. The photocatalytic properties were characterized through X-ray powder diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, N 2 adsorption-desorption studies and diffuse reflectance UV–vis absorption spectroscopy. It is found that the Ti:Ash nanocomposites doped with Ce shifted the light absorption band-edge position to the visible region. Moreover, the Ce doped Ti:Ash has large surface area and pore diameter. The Ce doping could significantly improve the absorption edge of visible light and adjust the cut-off absorption wavelength from 404 nm to 451, 477 and 496 nm for 5%, 10% and 15% Ce-doped mesoporous Ti:Ash catalysts, respectively. As the Ce doping ratio increased, the band gaps decreased from 3.06 eV to 2.53 eV. The most contaminant reduction up to 45% was achieved when Ti:Ash:Ce 40:55:5 was used. Higher Ce loading on the photocatalyst may reduce the photocatalyst performance because supernumerary metal loading on TiO 2 can block TiO 2 defect sites which are necessary for the adsorption and photoactivation. The OPFA also acts as an adsorbent for some pollutants besides, reducing the water salinity. It can be deduced that the hybrid TiO 2 photocatalyst that synthesized with OPFA and doped with Ce has huge potential to treat seawater prior to commercial seawater desalination process. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {367--378} doi = {10.9767/bcrec.15.2.7055.367-378}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/7055} }
Refworks Citation Data :
The treatment of organic pollutants in water including semiconductor photocatalysis is a promising approach to disinfect water. The objective of this study is to investigate the effect of Ce loaded on mesoporous Ti:Ash catalyst for water pretreatment process. The mesoporous Ti:Ash catalyst that doped with Ce was synthesized through wet impregnation method with 5%, 10%, and 15% weight percentage of Ce doped on 40:60 Ti:Ash. The photocatalytic properties were characterized through X-ray powder diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2 adsorption-desorption studies and diffuse reflectance UV–vis absorption spectroscopy. It is found that the Ti:Ash nanocomposites doped with Ce shifted the light absorption band-edge position to the visible region. Moreover, the Ce doped Ti:Ash has large surface area and pore diameter. The Ce doping could significantly improve the absorption edge of visible light and adjust the cut-off absorption wavelength from 404 nm to 451, 477 and 496 nm for 5%, 10% and 15% Ce-doped mesoporous Ti:Ash catalysts, respectively. As the Ce doping ratio increased, the band gaps decreased from 3.06 eV to 2.53 eV. The most contaminant reduction up to 45% was achieved when Ti:Ash:Ce 40:55:5 was used. Higher Ce loading on the photocatalyst may reduce the photocatalyst performance because supernumerary metal loading on TiO2 can block TiO2 defect sites which are necessary for the adsorption and photoactivation. The OPFA also acts as an adsorbent for some pollutants besides, reducing the water salinity. It can be deduced that the hybrid TiO2 photocatalyst that synthesized with OPFA and doped with Ce has huge potential to treat seawater prior to commercial seawater desalination process. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)